File size: 74,501 Bytes
4e8c262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 |
# Initialize form values based on selected template
if selected_template and selected_template != "Custom Scenario":
new_hires = decision_templates[selected_template]["new_hires"]
new_marketing = decision_templates[selected_template]["new_marketing"]
other_expenses = decision_templates[selected_template]["other_expenses"]
growth_impact = decision_templates[selected_template]["growth_impact"]
question = decision_templates[selected_template]["question"]
else:
new_hires = 0
new_marketing = 0
other_expenses = 0
growth_impact = 0.0
question = ""
# Decision input form
with st.form("decision_form"):
st.subheader("Scenario Parameters")
col1, col2 = st.columns(2)
with col1:
new_hires = st.number_input("New Engineering Hires", min_value=0, max_value=10, value=new_hires,
help=f"Each engineer costs ${ENGINEER_SALARY:,} per month")
st.caption(f"Monthly Cost: ${new_hires * ENGINEER_SALARY:,}")
new_marketing = st.number_input("Additional Monthly Marketing Budget",
min_value=0, max_value=50000, value=new_marketing, step=1000,
help="Additional marketing spend per month")
with col2:
other_expenses = st.number_input("Other Additional Monthly Expenses",
min_value=0, max_value=50000, value=other_expenses, step=1000,
help="Any other additional monthly expenses")
growth_impact = st.slider("Estimated Impact on Monthly Growth Rate",
min_value=0.0, max_value=0.10, value=growth_impact, step=0.01,
format="%.2f",
help="Estimated increase in monthly growth rate due to these investments")
st.caption(f"New Growth Rate: {(startup_data['growth_rate'] + growth_impact) * 100:.1f}% (current: {startup_data['growth_rate'] * 100:.1f}%)")
question = st.text_area("Describe your decision scenario",
value=question,
height=100,
placeholder="E.g., We're considering hiring two more engineers and increasing our marketing budget...")
decision_summary = f"""
- {new_hires} new engineers: ${new_hires * ENGINEER_SALARY:,}/month
- Marketing increase: ${new_marketing:,}/month
- Other expenses: ${other_expenses:,}/month
- Total additional burn: ${new_hires * ENGINEER_SALARY + new_marketing + other_expenses:,}/month
- Growth impact: +{growth_impact * 100:.1f}% monthly growth
"""
st.markdown(f"**Decision Summary:**\n{decision_summary}")
submitted = st.form_submit_button("Simulate Decision")
if submitted:
# Calculate current and new runway
current_runway, new_runway, current_df, new_df = simulate_decision(
startup_data['cash'],
startup_data['burn_rate'],
startup_data['revenue'],
startup_data['growth_rate'],
other_expenses,
new_hires,
new_marketing,
growth_impact
)
# Display results
st.markdown("<h3>Decision Impact Analysis</h3>", unsafe_allow_html=True)
# Summary metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Current Runway", f"{current_runway} months")
with col2:
runway_change = new_runway - current_runway
st.metric("New Runway", f"{new_runway} months",
delta=f"{runway_change} months",
delta_color="off" if runway_change == 0 else ("normal" if runway_change > 0 else "inverse"))
with col3:
new_burn = startup_data['burn_rate'] + other_expenses + (new_hires * ENGINEER_SALARY) + new_marketing
burn_change = new_burn - startup_data['burn_rate']
burn_percentage = burn_change / startup_data['burn_rate'] * 100
st.metric("New Monthly Burn", f"${new_burn:,}",
delta=f"${burn_change:,} ({burn_percentage:.1f}%)",
delta_color="inverse")
# Cash projection comparison
st.subheader("Cash Projection Comparison")
# Combine dataframes for comparison
current_df['Scenario'] = 'Current'
new_df['Scenario'] = 'After Decision'
combined_df = pd.concat([current_df, new_df])
combined_df = combined_df.reset_index()
combined_df = combined_df.rename(columns={'index': 'Date'})
# Plot comparison
fig = px.line(combined_df, x='Date', y='Cumulative_Cash', color='Scenario',
title="Cash Runway Comparison",
labels={'Cumulative_Cash': 'Remaining Cash'},
color_discrete_sequence=['#4c78a8', '#f58518'])
fig.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Out of Cash")
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Date",
yaxis_title="Cash Balance ($)",
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
st.plotly_chart(fig, use_container_width=True)
# Get AI analysis
if question:
decision_params = {
"new_hires": new_hires,
"new_marketing": new_marketing,
"other_expenses": other_expenses,
"growth_impact": growth_impact
}
analysis_key = f"decision_analysis_{new_hires}_{new_marketing}_{other_expenses}_{growth_impact}"
if analysis_key not in st.session_state.insights_cache:
analysis = generate_ai_response(f"""
You are a financial advisor for startups. A founder asks:
"{question}"
Here's their current financial situation:
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
They're considering these changes:
- Adding {decision_params['new_hires']} new engineers (${ENGINEER_SALARY}/month each)
- Increasing marketing budget by ${decision_params['new_marketing']}/month
- Adding ${decision_params['other_expenses']}/month in other expenses
- Expecting {decision_params['growth_impact'] * 100}% additional monthly growth
Analyze this decision thoroughly:
1. Quantify the impact on runway (exact calculation)
2. Assess the risk level (low, medium, high)
3. Compare the ROI potential
4. Provide 3 specific recommendations or alternatives
5. Suggest timeline and milestones for implementation if approved
Be direct and specific with numbers and timeframes.
""")
st.session_state.insights_cache[analysis_key] = analysis
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Decision Analysis</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[analysis_key]}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Risk assessment
risk_level = "High" if new_runway < 3 else ("Medium" if new_runway < 6 else "Low")
risk_color = "danger-metric" if risk_level == "High" else ("warning-metric" if risk_level == "Medium" else "good-metric")
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Risk Assessment</p>
<p class='metric-value {risk_color}'>{risk_level} Risk Decision</p>
<p>This decision would give you {new_runway} months of runway.</p>
</div>
""", unsafe_allow_html=True)
# Render Fund Monitoring page
def render_fund_monitoring():
"""Render the AI-powered fund monitoring page"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data or select a sample startup.")
render_upload_page()
return
# Get the selected startup data
transactions_df = st.session_state.startups[st.session_state.current_startup]['transactions']
st.markdown("<h1 class='main-header'>Investor Fund Monitoring</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>AI-powered fraud detection and spending analysis</p>", unsafe_allow_html=True)
# How AI helps with fund monitoring
with st.expander("ℹ️ How AI enhances fund monitoring"):
st.markdown("""
### How AI Powers Your Fund Monitoring
The fund monitoring system uses AI to help maintain investor trust and optimize spending:
- **Anomaly Detection**: Our AI models identify unusual transactions that don't match typical startup spending patterns
- **Risk Scoring**: Each transaction is assigned a risk score based on multiple factors like amount, category, vendor, and description
- **Pattern Recognition**: The system identifies potentially concerning spending trends across categories over time
- **Fraud Prevention**: AI algorithms flag transactions that match known patterns of misuse before they become issues
- **Investor-Ready Reporting**: Generate reports that demonstrate responsible financial stewardship to investors
This helps founders maintain investor trust, prevent misuse of funds, and create transparency in financial operations.
""")
st.write("Monitor your startup's spending to maintain investor trust and ensure proper fund usage. Our AI algorithms automatically flag suspicious transactions and identify spending patterns.")
# AI insights for fund monitoring
insights_key = f"fund_monitoring_{date.today().isoformat()}"
if insights_key not in st.session_state.insights_cache:
insights = generate_ai_response("""
You are a financial fraud detection expert. Provide 2-3 critical spending patterns that investors typically look for when monitoring startup fund usage.
Format as brief bullet points focused on maintaining investor trust.
""")
st.session_state.insights_cache[insights_key] = insights
with st.expander("🔍 AI Monitoring Insights", expanded=True):
st.markdown("<span class='ai-badge'>AI-Generated Insights</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[insights_key])
# Process transactions to detect suspicious ones with AI enhancement
processed_df = detect_suspicious_transactions(transactions_df)
# Summary metrics
total_transactions = len(processed_df)
suspicious_transactions = processed_df[processed_df['Suspicious']].copy()
suspicious_count = len(suspicious_transactions)
suspicious_amount = suspicious_transactions['Amount'].sum()
total_amount = processed_df['Amount'].sum()
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Total Transactions</p>
<p class='metric-value'>{total_transactions}</p>
</div>
""", unsafe_allow_html=True)
with col2:
flagged_percent = suspicious_count/total_transactions*100 if total_transactions > 0 else 0
status = "danger-metric" if flagged_percent > 10 else ("warning-metric" if flagged_percent > 5 else "good-metric")
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Flagged Transactions</p>
<p class='metric-value {status}'>{suspicious_count} ({flagged_percent:.1f}%)</p>
</div>
""", unsafe_allow_html=True)
with col3:
amount_percent = suspicious_amount/total_amount*100 if total_amount > 0 else 0
status = "danger-metric" if amount_percent > 15 else ("warning-metric" if amount_percent > 7 else "good-metric")
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Flagged Amount</p>
<p class='metric-value {status}'>${suspicious_amount:,.0f} ({amount_percent:.1f}%)</p>
</div>
""", unsafe_allow_html=True)
with col4:
avg_risk = suspicious_transactions['Risk_Score'].mean() if not suspicious_transactions.empty else 0
status = "danger-metric" if avg_risk > 50 else ("warning-metric" if avg_risk > 30 else "good-metric")
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Average Risk Score</p>
<p class='metric-value {status}'>{avg_risk:.1f}/100</p>
</div>
""", unsafe_allow_html=True)
# Tabs for different views
tab1, tab2 = st.tabs(["Flagged Transactions", "All Transactions"])
with tab1:
if suspicious_count > 0:
# Add risk score visualization (color coded)
suspicious_view = suspicious_transactions.copy()
# Display dataframe
st.dataframe(
suspicious_view[['Date', 'Category', 'Vendor', 'Amount', 'Description', 'Risk_Score', 'Reason']],
use_container_width=True
)
# Get AI analysis of suspicious transactions
fraud_key = f"fraud_{date.today().isoformat()}"
if fraud_key not in st.session_state.insights_cache:
suspicious_text = "\n".join([
f"- {row['Date']}: {row['Vendor']} (${row['Amount']:.2f}) - {row['Description']}"
for _, row in suspicious_transactions.head(5).iterrows()
])
fraud_analysis = generate_ai_response(f"""
You are a financial fraud detection expert. Review these flagged suspicious transactions:
{suspicious_text}
Provide a detailed analysis:
1. Identify concerning patterns in these transactions
2. Recommend specific actions to address these issues
3. Suggest preventive measures to avoid similar issues in the future
Format your response with clear sections and actionable recommendations.
""")
st.session_state.insights_cache[fraud_key] = fraud_analysis
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Fraud Analysis</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[fraud_key]}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Action buttons
st.subheader("Recommended Actions")
col1, col2, col3 = st.columns(3)
with col1:
if st.button("🔍 Investigate All Flagged"):
st.session_state.investigation_started = True
with col2:
if st.button("📝 Generate Investor Report"):
st.session_state.report_generated = True
with col3:
if st.button("✅ Mark Reviewed"):
st.session_state.marked_reviewed = True
# Simulate action responses
if 'investigation_started' in st.session_state and st.session_state.investigation_started:
st.success("Investigation initiated for all flagged transactions. Your financial team will be notified.")
if 'report_generated' in st.session_state and st.session_state.report_generated:
st.success("Investor report generated and ready for review before sending.")
if 'marked_reviewed' in st.session_state and st.session_state.marked_reviewed:
st.success("All transactions marked as reviewed. Status will be updated in the system.")
else:
st.success("No suspicious transactions detected by our AI system. Your spending appears to be normal for a startup at your stage.")
with tab2:
st.dataframe(processed_df[['Date', 'Category', 'Vendor', 'Amount', 'Description', 'Suspicious', 'Risk_Score']],
use_container_width=True)
# Spending patterns
st.subheader("Spending Pattern Analysis")
# Category breakdown
category_spending = processed_df.groupby('Category')['Amount'].sum().reset_index()
col1, col2 = st.columns(2)
with col1:
fig = px.bar(category_spending, x='Category', y='Amount',
title="Spending by Category",
labels={'Amount': 'Total Spent ($)'},
color='Amount',
color_continuous_scale='Blues')
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Category",
yaxis_title="Amount Spent ($)",
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
st.plotly_chart(fig, use_container_width=True)
with col2:
# AI spending pattern analysis
spending_key = f"spending_pattern_{date.today().isoformat()}"
if spending_key not in st.session_state.insights_cache:
spending_pattern_analysis = generate_ai_response("""
You are a startup spending analyst. Review the spending patterns and provide 3 key insights about:
1. Categories that appear to have unusually high spending
2. Potential areas where spending could be optimized
3. Changes in spending patterns that investors might find concerning
Format as concise, actionable bullet points.
""")
st.session_state.insights_cache[spending_key] = spending_pattern_analysis
st.markdown("<div class='insight-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Spending Analysis</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[spending_key])
st.markdown("</div>", unsafe_allow_html=True)
# AI-powered spending controls recommendation
st.subheader("AI-Recommended Spending Controls")
# Get AI recommendations for spending controls
controls_key = f"spending_controls_{date.today().isoformat()}"
if controls_key not in st.session_state.insights_cache:
controls_recommendations = generate_ai_response("""
You are a financial controls expert for startups. Based on the spending patterns and suspicious transactions,
recommend 3-4 specific spending controls that the startup should implement to prevent misuse of funds.
For each control, provide:
1. A clear policy statement
2. Implementation steps
3. Expected impact
Format as concise, actionable recommendations.
""")
st.session_state.insights_cache[controls_key] = controls_recommendations
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Control Recommendations</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[controls_key]}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Call-to-action
st.info("📅 Need help implementing financial controls? Schedule a session with our AI financial advisor.")
# Render AI Financial Advisor page
def render_ai_financial_advisor():
"""Render the AI financial advisor page with voice chat capabilities"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data or select a sample startup.")
render_upload_page()
return
# Get the selected startup data
startup_data = st.session_state.startups[st.session_state.current_startup]['profile']
st.markdown("<h1 class='main-header'>AI Financial Advisor</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>Get expert financial guidance through our AI-powered advisor</p>", unsafe_allow_html=True)
# How AI helps with financial advisory
with st.expander("ℹ️ How AI powers your financial advisor"):
st.markdown("""
### How AI Powers Your Financial Advisor
Our AI financial advisor combines advanced language models with financial expertise:
- **Natural Language Understanding**: The system interprets complex financial questions in plain English
- **Domain-Specific Knowledge**: Our AI is trained on startup finance, venture capital, and financial modeling
- **Context-Aware Responses**: The advisor takes into account your specific financial situation and history
- **Voice Synthesis**: ElevenLabs voice technology creates natural, high-quality voice responses
- **Customized Guidance**: AI tailors advice specifically to your stage, industry, and financial position
This gives founders 24/7 access to high-quality financial guidance without the high cost of consultants.
""")
# Chat container
st.markdown("<div style='background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>", unsafe_allow_html=True)
# Display chat history
st.subheader("Chat with your Financial Advisor")
# Display chat messages
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div style='background-color: #e6f7ff; padding: 10px; border-radius: 10px; margin-bottom: 10px;'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div style='background-color: #f0f7ff; padding: 10px; border-radius: 10px; margin-bottom: 10px;'><strong>Financial Advisor:</strong> {message['content']}</div>", unsafe_allow_html=True)
# Show play button for voice if it exists
if 'audio' in message and message['audio']:
st.audio(message['audio'], format='audio/mp3')
# Input for new message
col1, col2 = st.columns([5, 1])
with col1:
user_input = st.text_input("Ask a financial question", key="user_question")
with col2:
use_voice = st.checkbox("Enable voice", value=True)
# Common financial questions
st.markdown("### Common Questions")
question_cols = st.columns(3)
common_questions = [
"How much runway do we have at our current burn rate?",
"Should we increase our marketing spend given our growth rate?",
"When should we start preparing for our next fundraising round?",
"How can we optimize our burn rate without impacting growth?",
"What metrics should we focus on improving right now?",
"How do our unit economics compare to similar startups?"
]
selected_question = None
for i, question in enumerate(common_questions):
with question_cols[i % 3]:
if st.button(question, key=f"q_{i}"):
selected_question = question
# Process user input (either from text input or selected question)
if user_input or selected_question:
question = user_input or selected_question
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": question})
# Get AI response
response = generate_ai_response(f"""
You are a strategic financial advisor for startups. A founder asks:
"{question}"
Here's their current financial situation:
- Stage: {startup_data['stage']}
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
- Last funding: {startup_data['last_funding']}
- Team size: {startup_data['employees']}
Provide detailed, actionable advice addressing their question. Include:
1. Clear assessment of their current situation
2. 3-5 specific, actionable recommendations with expected outcomes
3. Relevant metrics they should track
4. Industry benchmarks for comparison
5. Timeline for implementation and results
Be specific with numbers, timeframes, and expected outcomes.
""")
# Generate voice response if enabled
audio_data = None
if use_voice:
audio_data = generate_voice_response(response)
# Add AI response to chat history
st.session_state.chat_history.append({
"role": "assistant",
"content": response,
"audio": audio_data
})
# Rerun to display updated chat
st.rerun()
st.markdown("</div>", unsafe_allow_html=True)
# Advanced tools
st.subheader("Advanced Financial Tools")
tool_cols = st.columns(3)
with tool_cols[0]:
st.markdown("""
<div style='background-color: white; padding: 15px; border-radius: 10px; height: 200px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h4>Financial Model Review</h4>
<p>Upload your financial model for AI analysis and recommendations.</p>
<div style='position: absolute; bottom: 15px;'>
<button disabled style="background-color: #E6F3FF; color: #0066cc; border-radius: 5px; padding: 5px 10px; border: none;">Coming Soon</button>
</div>
</div>
""", unsafe_allow_html=True)
with tool_cols[1]:
st.markdown("""
<div style='background-color: white; padding: 15px; border-radius: 10px; height: 200px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h4>Investor Pitch Review</h4>
<p>Get AI feedback on your investor pitch deck and financial projections.</p>
<div style='position: absolute; bottom: 15px;'>
<button disabled style="background-color: #E6F3FF; color: #0066cc; border-radius: 5px; padding: 5px 10px; border: none;">Coming Soon</button>
</div>
</div>
""", unsafe_allow_html=True)
with tool_cols[2]:
st.markdown("""
<div style='background-color: white; padding: 15px; border-radius: 10px; height: 200px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);'>
<h4>Fundraising Strategy</h4>
<p>Generate a customized fundraising strategy based on your metrics.</p>
<div style='position: absolute; bottom: 15px;'>
<button disabled style="background-color: #E6F3FF; color: #0066cc; border-radius: 5px; padding: 5px 10px; border: none;">Coming Soon</button>
</div>
</div>
""", unsafe_allow_html=True)
# Main function
def main():
# Initialize Gemini API
initialize_gemini()
# Create sidebar navigation
create_sidebar()
# Render the correct page based on session state
if st.session_state.current_page == 'upload':
render_upload_page()
elif st.session_state.current_page == 'dashboard':
render_financial_dashboard()
elif st.session_state.current_page == 'simulator':
render_decision_simulator()
elif st.session_state.current_page == 'monitoring':
render_fund_monitoring()
elif st.session_state.current_page == 'advisor':
render_ai_financial_advisor()
if __name__ == "__main__":
main()
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta, date
import time
import io
import base64
import requests
import google.generativeai as genai
# Constants
DEFAULT_GROWTH_RATE = 0.08 # 8% monthly growth
DEFAULT_BURN_RATE = 85000 # $85,000 monthly burn
ENGINEER_SALARY = 10000 # $10,000 monthly cost per engineer ($120K/year)
# Initialize session state variables
if 'startups' not in st.session_state:
st.session_state.startups = {} # Dictionary to store multiple startup data
if 'current_startup' not in st.session_state:
st.session_state.current_startup = None # Currently selected startup
if 'current_page' not in st.session_state:
st.session_state.current_page = 'upload' # Default page
if 'insights_cache' not in st.session_state:
st.session_state.insights_cache = {}
if 'chat_history' not in st.session_state:
st.session_state.chat_history = [
{"role": "assistant", "content": "Hi there! I'm your AI financial advisor. How can I help with your startup's finances today?"}
]
# Configure Google GenerativeAI (Gemini)
def initialize_gemini():
"""Initialize Google's GenerativeAI (Gemini) with API key"""
try:
# In production, get this from st.secrets or environment variables
api_key = st.secrets.get("GEMINI_API_KEY", None)
if api_key:
genai.configure(api_key=api_key)
return True
else:
st.warning("Gemini API key not found. Using simulated AI responses.")
return False
except Exception as e:
st.error(f"Failed to initialize Gemini AI: {e}")
return False
def generate_ai_response(prompt, simulate=True):
"""Generate text using Google's GenerativeAI (Gemini)"""
if simulate:
# Return a generic response for simulation
return """
Based on your financial situation, I recommend focusing on these key areas:
1. **Extend Your Runway**: With your current burn rate, consider reducing non-essential expenses by 15-20%. Focus particularly on optimizing marketing efficiency while maintaining growth activities.
2. **Accelerate Revenue Growth**: Your current monthly growth is good, but increasing it would significantly improve your cash position. Consider focusing sales efforts on higher-value customers with shorter sales cycles.
3. **Prepare for Fundraising**: Begin conversations with existing investors about potential bridge funding. Prepare updated metrics showing clear progress on unit economics and customer acquisition.
I recommend reviewing your expense categories weekly and tracking your burn rate closely.
"""
else:
try:
# Initialize Gemini model
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(prompt)
return response.text
except Exception as e:
st.error(f"Error generating AI response: {e}")
return "Sorry, I couldn't generate a response at this time."
def generate_voice_response(text, simulate=True):
"""Generate voice response using ElevenLabs API"""
if simulate:
# Return empty audio data for simulation
return None
else:
try:
# Get API key from secrets
api_key = st.secrets.get("ELEVENLABS_API_KEY", None)
if not api_key:
st.warning("ElevenLabs API key not found. Voice response not available.")
return None
# ElevenLabs API endpoint
url = "https://api.elevenlabs.io/v1/text-to-speech/21m00Tcm4TlvDq8ikWAM" # Rachel voice ID
# Headers and payload
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": api_key
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
# Make the API call
response = requests.post(url, json=data, headers=headers)
if response.status_code == 200:
return response.content
else:
st.error(f"Error with ElevenLabs API: {response.status_code}")
return None
except Exception as e:
st.error(f"Error generating voice response: {e}")
return None
def switch_page(page_name):
"""Function to switch between pages"""
st.session_state.current_page = page_name
st.rerun()
# Calculate runway for business decisions
def calculate_runway(cash, burn_rate, revenue, growth_rate, months=24):
"""
Calculate runway based on cash, burn, revenue and growth
Returns runway in months and dataframe with projections
"""
# Create date range
current_date = datetime.now()
date_range = [current_date + timedelta(days=30*i) for i in range(months)]
# Initialize data structures
cash_flow = []
remaining_cash = cash
monthly_revenue = revenue
# Calculate cash flow for each month
for i in range(months):
# Calculate cash flow for this month
net_burn = burn_rate - monthly_revenue
cash_flow.append(net_burn)
# Update remaining cash
remaining_cash -= net_burn
# Update revenue with growth
monthly_revenue *= (1 + growth_rate)
# Create dataframe
df = pd.DataFrame({
'Net_Burn': cash_flow,
'Cumulative_Cash': [cash - sum(cash_flow[:i+1]) for i in range(len(cash_flow))]
}, index=date_range)
# Calculate runway (when cumulative cash goes negative)
negative_cash = df[df['Cumulative_Cash'] < 0]
if len(negative_cash) > 0:
runway_months = (negative_cash.index[0] - current_date).days // 30
else:
runway_months = months
return runway_months, df
# Simulate decisions
def simulate_decision(cash, burn_rate, revenue, growth_rate,
additional_expenses, new_hires, marketing_increase, growth_impact):
"""
Simulate the financial impact of a business decision
"""
# Current projection
current_runway, current_df = calculate_runway(
cash, burn_rate, revenue, growth_rate
)
# New projection with decision impact
new_burn_rate = burn_rate + additional_expenses + (new_hires * ENGINEER_SALARY) + marketing_increase
new_growth_rate = growth_rate + growth_impact
new_runway, new_df = calculate_runway(
cash, new_burn_rate, revenue, new_growth_rate
)
return current_runway, new_runway, current_df, new_df
# Detect suspicious transactions
def detect_suspicious_transactions(transactions_df):
"""AI-enhanced suspicious transaction detection."""
df = transactions_df.copy()
# Define thresholds for each category
category_thresholds = {
"Travel": 3000,
"Marketing": 10000,
"Office": 7000,
"Software": 6000,
"Consulting": 5000,
"Legal": 6000
}
# Define suspicious terms
suspicious_terms = ['luxury', 'cruise', 'premium', 'personal', 'gift']
# Add suspicious column
df['Suspicious'] = False
df['Reason'] = ""
df['Risk_Score'] = 0
# Check for suspicious patterns
for idx, row in df.iterrows():
reasons = []
risk_score = 0
# Check if amount exceeds category threshold
if row['Category'] in category_thresholds:
if row['Amount'] > category_thresholds[row['Category']]:
reasons.append(f"Amount exceeds typical spending for {row['Category']}")
risk_score += 30
# Higher risk for significantly exceeding threshold
excess_percentage = (row['Amount'] - category_thresholds[row['Category']]) / category_thresholds[row['Category']] * 100
if excess_percentage > 100: # More than double the threshold
risk_score += 20
# Check for suspicious vendors or descriptions
if any(term in str(row['Vendor']).lower() for term in suspicious_terms):
reasons.append(f"Vendor name contains suspicious term")
risk_score += 25
if any(term in str(row['Description']).lower() for term in suspicious_terms):
reasons.append(f"Description contains suspicious term")
risk_score += 20
# Check for rounded amounts (potential indicator of estimation/fabrication)
if row['Amount'] % 1000 == 0 and row['Amount'] > 3000:
reasons.append(f"Suspiciously round amount")
risk_score += 15
# Mark as suspicious if risk score is high enough
if risk_score >= 30:
df.at[idx, 'Suspicious'] = True
df.at[idx, 'Reason'] = "; ".join(reasons)
df.at[idx, 'Risk_Score'] = risk_score
# Sort by risk score
df = df.sort_values(by='Risk_Score', ascending=False)
return df
# Parse CSV file to dataframe
def parse_csv_to_df(file):
"""Parse uploaded CSV file to Pandas DataFrame"""
try:
df = pd.read_csv(file)
return df, None
except Exception as e:
return None, f"Error parsing CSV: {e}"
# Page config
st.set_page_config(
page_title="StartupFinancePilot",
page_icon="💰",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stDeployButton {display:none;}
.main-header {
font-size: 2.5rem;
color: #0066cc;
margin-bottom: 0.5rem;
}
.sub-header {
font-size: 1.5rem;
color: #5c5c5c;
margin-bottom: 1.5rem;
}
.metric-card {
background-color: #f8f9fa;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.metric-label {
font-size: 1rem;
color: #5c5c5c;
}
.metric-value {
font-size: 1.8rem;
color: #0066cc;
font-weight: bold;
}
.good-metric {
color: #28a745;
}
.warning-metric {
color: #ffc107;
}
.danger-metric {
color: #dc3545;
}
/* Style for sidebar buttons */
div.stButton > button {
width: 100%;
padding: 10px 10px;
border: none;
background-color: #E6F3FF;
color: #0066cc;
border-radius: 10px;
text-align: left;
margin: 5px 0;
font-weight: bold;
}
div.stButton > button:hover {
background-color: #CCE5FF;
color: #004080;
}
/* Style for title box */
.title-box {
background: linear-gradient(45deg, #0066cc, #66b3ff);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
text-align: center;
color: white;
cursor: pointer;
}
.ai-badge {
display: inline-block;
background-color: #0066cc;
color: white;
border-radius: 4px;
padding: 2px 6px;
font-size: 0.7rem;
font-weight: bold;
margin-bottom: 8px;
}
.insight-card, .advisor-card {
background-color: #f8f9fa;
border-radius: 10px;
padding: 15px;
margin-bottom: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.advice-text {
margin-top: 10px;
line-height: 1.6;
}
</style>
""", unsafe_allow_html=True)
# Create sidebar navigation
def create_sidebar():
with st.sidebar:
# Title box that works as home button
st.markdown("""
<div class="title-box">
<h1>💰 StartupFinancePilot</h1>
<p>AI-powered financial assistant for startups</p>
</div>
""", unsafe_allow_html=True)
# Startup selector (if there are startups in the session state)
if st.session_state.startups:
st.subheader("Selected Startup")
startup_names = list(st.session_state.startups.keys())
selected_startup = st.selectbox(
"Choose Startup",
startup_names,
index=startup_names.index(st.session_state.current_startup) if st.session_state.current_startup in startup_names else 0
)
st.session_state.current_startup = selected_startup
# Show basic startup info
if selected_startup in st.session_state.startups:
startup_data = st.session_state.startups[selected_startup]['profile']
st.markdown(f"""
**Stage:** {startup_data['stage']}
**Cash:** ${startup_data['cash']:,}
**Monthly Burn:** ${startup_data['burn_rate']:,}
**Monthly Revenue:** ${startup_data['revenue']:,}
""")
st.markdown("<hr>", unsafe_allow_html=True) # Divider
# Upload data button at the top
if st.button("📤 Upload Startup Data", use_container_width=True):
switch_page('upload')
# Navigation buttons
if st.button("📊 Financial Dashboard", use_container_width=True):
switch_page('dashboard')
if st.button("🔮 Decision Simulator", use_container_width=True):
switch_page('simulator')
if st.button("🕵️ Fund Monitoring", use_container_width=True):
switch_page('monitoring')
if st.button("🤖 AI Financial Advisor", use_container_width=True):
switch_page('advisor')
# Upload and process financial data files
def render_upload_page():
"""Render the upload page for startup data"""
st.markdown("<h1 class='main-header'>Upload Your Startup Data</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>Upload CSV files or use sample data to get started</p>", unsafe_allow_html=True)
with st.expander("Upload Instructions", expanded=False):
st.markdown("""
### How to Upload Your Startup Data
You can upload three types of files:
1. **Company Profile** - A CSV with basic information about your startup including:
- name, stage, founded, employees, last_funding, cash, burn_rate, revenue, growth_rate
2. **Cash Flow Data** - A CSV with monthly cash flow data with columns:
- Month, Revenue, Payroll, Marketing, Office, Software, Travel, Legal, Misc
3. **Transaction Data** - A CSV with transaction details:
- Date, Category, Vendor, Amount, Description, Flag
If you don't have these files ready, you can use our sample data.
""")
col1, col2 = st.columns(2)
with col1:
startup_name = st.text_input("Startup Name", value="My Startup")
profile_file = st.file_uploader("Upload Company Profile (CSV)", type=['csv'])
cash_flow_file = st.file_uploader("Upload Cash Flow Data (CSV)", type=['csv'])
transactions_file = st.file_uploader("Upload Transactions Data (CSV)", type=['csv'])
with col2:
st.markdown("""
<div style="background-color: #f0f7ff; padding: 15px; border-radius: 10px; height: 90%;">
<h4>Why Upload Your Data?</h4>
<p>By uploading your actual financial data, you'll get:</p>
<ul>
<li>Personalized AI insights tailored to your startup</li>
<li>Accurate runway projections based on your real spending patterns</li>
<li>Custom recommendations to optimize your burn rate</li>
<li>More realistic decision simulations</li>
</ul>
<p>All data is processed securely and never stored permanently.</p>
</div>
""", unsafe_allow_html=True)
# Process the files if uploaded
if st.button("Process Data"):
# Initialize with default values
startup_data = {
"name": startup_name,
"stage": "Seed",
"founded": "12 months ago",
"employees": 5,
"last_funding": "Not specified",
"cash": 100000,
"burn_rate": 20000,
"revenue": 5000,
"growth_rate": 0.05
}
cash_flow_df = None
transactions_df = None
# Parse company profile
if profile_file:
try:
profile_df, error = parse_csv_to_df(profile_file)
if error:
st.error(error)
else:
# Get the first row as a dictionary
if len(profile_df) > 0:
startup_data.update(profile_df.iloc[0].to_dict())
st.success(f"Successfully loaded company profile for {startup_data['name']}")
except Exception as e:
st.error(f"Error processing company profile: {e}")
# Parse cash flow data
if cash_flow_file:
cash_flow_df, error = parse_csv_to_df(cash_flow_file)
if error:
st.error(error)
else:
# Add calculated fields if not present
if "Total_Expenses" not in cash_flow_df.columns:
expense_columns = [col for col in cash_flow_df.columns if col not in ["Month", "Revenue", "Total_Expenses", "Net_Burn"]]
cash_flow_df["Total_Expenses"] = cash_flow_df[expense_columns].sum(axis=1)
if "Net_Burn" not in cash_flow_df.columns:
cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"]
st.success("Successfully loaded cash flow data")
# Parse transactions data
if transactions_file:
transactions_df, error = parse_csv_to_df(transactions_file)
if error:
st.error(error)
else:
# Ensure transactions data has required columns
required_columns = ["Date", "Category", "Vendor", "Amount", "Description"]
if all(col in transactions_df.columns for col in required_columns):
if "Flag" not in transactions_df.columns:
transactions_df["Flag"] = "Normal" # Default flag
st.success("Successfully loaded transactions data")
else:
st.error("Transactions file is missing required columns")
# If any files were processed, save the data to session state
if profile_file or cash_flow_file or transactions_file:
# Create a sample cash flow dataframe if none was uploaded
if cash_flow_df is None:
cash_flow_df = create_sample_cash_flow(startup_data)
# Create a sample transactions dataframe if none was uploaded
if transactions_df is None:
transactions_df = create_sample_transactions(startup_data)
# Store in session state
st.session_state.startups[startup_data['name']] = {
'profile': startup_data,
'cash_flow': cash_flow_df,
'transactions': transactions_df
}
# Set as current startup
st.session_state.current_startup = startup_data['name']
st.success(f"Successfully added {startup_data['name']} to your startups")
st.info("You can now analyze this startup's data in the dashboard")
# Redirect to dashboard
switch_page('dashboard')
# Sample data options
st.subheader("Or Use Sample Data")
sample_col1, sample_col2 = st.columns(2)
with sample_col1:
if st.button("Use TechHealth AI Sample"):
# Load sample data (function would generate or load from file)
load_sample_data("TechHealth AI")
st.success("Successfully loaded TechHealth AI sample data")
# Redirect to dashboard
switch_page('dashboard')
with sample_col2:
if st.button("Use GreenTech Innovations Sample"):
# Load another sample (function would generate or load from file)
load_sample_data("GreenTech Innovations")
st.success("Successfully loaded GreenTech Innovations sample data")
# Redirect to dashboard
switch_page('dashboard')
def create_sample_cash_flow(startup_data):
"""Create a sample cash flow dataframe for a startup"""
cash_flow_data = {
"Month": [f"Month {i}" for i in range(1, 7)],
"Revenue": [startup_data['revenue'] * (1 + startup_data['growth_rate'])**i for i in range(6)],
"Payroll": [startup_data['burn_rate'] * 0.7] * 6,
"Marketing": [startup_data['burn_rate'] * 0.15] * 6,
"Office": [startup_data['burn_rate'] * 0.05] * 6,
"Software": [startup_data['burn_rate'] * 0.03] * 6,
"Travel": [startup_data['burn_rate'] * 0.02] * 6,
"Legal": [startup_data['burn_rate'] * 0.01] * 6,
"Misc": [startup_data['burn_rate'] * 0.04] * 6
}
cash_flow_df = pd.DataFrame(cash_flow_data)
cash_flow_df["Total_Expenses"] = cash_flow_df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"]
return cash_flow_df
def create_sample_transactions(startup_data):
"""Create sample transaction data for a startup"""
transactions_data = {
"Date": [(datetime.now() - timedelta(days=i*5)).strftime("%Y-%m-%d") for i in range(10)],
"Category": ["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc", "Payroll", "Marketing", "Office"],
"Vendor": ["Payroll Provider", "Facebook Ads", "Office Rent", "AWS", "Travel Agency", "Legal Firm", "Miscellaneous", "Payroll Provider", "Google Ads", "Office Supplies"],
"Amount": [startup_data['burn_rate'] * 0.7, startup_data['burn_rate'] * 0.15, startup_data['burn_rate'] * 0.05, startup_data['burn_rate'] * 0.03, startup_data['burn_rate'] * 0.02, startup_data['burn_rate'] * 0.01, startup_data['burn_rate'] * 0.04, startup_data['burn_rate'] * 0.7, startup_data['burn_rate'] * 0.15, startup_data['burn_rate'] * 0.05],
"Description": ["Monthly Payroll", "Ad Campaign", "Monthly Rent", "Cloud Services", "Business Travel", "Legal Services", "Miscellaneous Expenses", "Monthly Payroll", "Ad Campaign", "Office Supplies"],
"Flag": ["Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal"]
}
return pd.DataFrame(transactions_data)
def load_sample_data(sample_name):
"""Load sample data for demonstration"""
if sample_name == "TechHealth AI":
# Create TechHealth AI sample
startup_data = {
"name": "TechHealth AI",
"stage": "Seed",
"founded": "18 months ago",
"employees": 12,
"last_funding": "$1.2M seed round 10 months ago",
"cash": 320000,
"burn_rate": 85000,
"revenue": 15000,
"growth_rate": 0.08
}
else:
# Create GreenTech Innovations sample
startup_data = {
"name": "GreenTech Innovations",
"stage": "Series A",
"founded": "3 years ago",
"employees": 25,
"last_funding": "$4.5M Series A 8 months ago",
"cash": 2800000,
"burn_rate": 220000,
"revenue": 75000,
"growth_rate": 0.12
}
# Generate cash flow and transaction data
cash_flow_df = create_sample_cash_flow(startup_data)
transactions_df = create_sample_transactions(startup_data)
# Add some suspicious transactions for the sample
if sample_name == "TechHealth AI":
suspicious_transactions = pd.DataFrame([
{"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"},
{"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"},
{"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"}
])
transactions_df = pd.concat([suspicious_transactions, transactions_df], ignore_index=True)
# Store in session state
st.session_state.startups[startup_data['name']] = {
'profile': startup_data,
'cash_flow': cash_flow_df,
'transactions': transactions_df
}
# Set as current startup
st.session_state.current_startup = startup_data['name']
# Render Financial Dashboard
def render_financial_dashboard():
"""Render the AI-powered financial dashboard page"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data or select a sample startup.")
render_upload_page()
return
# Get the selected startup data
startup_data = st.session_state.startups[st.session_state.current_startup]['profile']
cash_flow_df = st.session_state.startups[st.session_state.current_startup]['cash_flow']
st.markdown("<h1 class='main-header'>Financial Dashboard</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>AI-powered financial insights at a glance</p>", unsafe_allow_html=True)
# How AI helps with financial dashboards
with st.expander("ℹ️ How AI enhances your financial dashboard"):
st.markdown("""
### How AI Powers Your Financial Dashboard
The financial dashboard uses AI to transform raw financial data into actionable intelligence:
- **Automated Analysis**: Instead of manually calculating runway and burn rates, our AI model analyzes your data and highlights critical trends
- **Predictive Forecasting**: AI forecasts your runway using pattern recognition and predictive analytics to account for varying growth rates
- **Anomaly Detection**: The system identifies unusual spending patterns or concerning financial trends that human analysis might miss
- **Strategic Recommendations**: Based on your specific financial situation, the AI provides tailored recommendations to optimize your runway
- **Benchmark Comparison**: Your metrics are automatically compared against industry standards for startups at your funding stage
This helps founders save time, catch financial issues early, and make data-driven decisions without needing financial expertise.
""")
# AI Insights Summary
insights_key = f"dashboard_{date.today().isoformat()}"
if insights_key not in st.session_state.insights_cache:
insights = generate_ai_response(f"""
You are a financial advisor for startups. Based on this startup's data:
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
Provide the top 3 most important financial insights that the founder should know today.
Format each insight as a brief, action-oriented bullet point.
""")
st.session_state.insights_cache[insights_key] = insights
with st.expander("📊 AI Financial Insights", expanded=True):
st.markdown("<span class='ai-badge'>AI-Generated Insights</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[insights_key])
# Key metrics
col1, col2, col3, col4 = st.columns(4)
# Calculate runway
runway_months, runway_df = calculate_runway(
startup_data['cash'],
startup_data['burn_rate'],
startup_data['revenue'],
startup_data['growth_rate']
)
# Determine status colors based on financial health indicators
runway_status = "danger-metric" if runway_months < 6 else ("warning-metric" if runway_months < 9 else "good-metric")
burn_status = "danger-metric" if startup_data['burn_rate'] > 100000 else ("warning-metric" if startup_data['burn_rate'] > 80000 else "good-metric")
revenue_status = "good-metric" if startup_data['revenue'] > 20000 else ("warning-metric" if startup_data['revenue'] > 10000 else "danger-metric")
with col1:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Current Cash</p>
<p class='metric-value'>${startup_data['cash']:,}</p>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Monthly Burn</p>
<p class='metric-value {burn_status}'>${startup_data['burn_rate']:,}</p>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Monthly Revenue</p>
<p class='metric-value {revenue_status}'>${startup_data['revenue']:,}</p>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Runway</p>
<p class='metric-value {runway_status}'>{runway_months} months</p>
</div>
""", unsafe_allow_html=True)
# Financial charts
st.subheader("Financial Overview")
tab1, tab2, tab3 = st.tabs(["Runway Projection", "Revenue vs. Expenses", "Burn Rate Trend"])
with tab1:
# Runway projection chart
fig = px.line(runway_df.reset_index(), x='index', y='Cumulative_Cash',
title="Cash Runway Projection",
labels={'index': 'Date', 'Cumulative_Cash': 'Remaining Cash ($)'},
color_discrete_sequence=['#0066cc'])
fig.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Out of Cash")
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Date",
yaxis_title="Cash Balance ($)",
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
st.plotly_chart(fig, use_container_width=True)
# Get analysis from AI
with st.expander("🔍 AI Financial Analysis", expanded=True):
# Use cache to avoid repeated API calls
analysis_key = f"runway_{date.today().isoformat()}"
if analysis_key not in st.session_state.insights_cache:
analysis = generate_ai_response(f"""
You are a financial advisor for startups. Analyze this startup's financial data:
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
Provide a detailed analysis of their runway and financial health. Include:
1. Exact runway calculation in months
2. Assessment of financial health (critical, concerning, stable, or healthy)
3. Benchmarks compared to similar seed-stage startups
4. Three specific, actionable recommendations to improve runway
5. Key metrics they should focus on
Format your response in a structured, easy-to-read format with clear sections and bullet points.
""")
st.session_state.insights_cache[analysis_key] = analysis
st.markdown("<span class='ai-badge'>AI Financial Analysis</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[analysis_key])
with tab2:
# Revenue vs Expenses chart
rev_exp_df = cash_flow_df.copy()
fig = px.bar(rev_exp_df, x='Month', y=['Revenue', 'Total_Expenses'],
title="Revenue vs. Expenses",
barmode='group',
labels={'value': 'Amount ($)', 'variable': 'Category'},
color_discrete_sequence=['#28a745', '#dc3545'])
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Month",
yaxis_title="Amount ($)",
font=dict(family="Arial, sans-serif", size=12),
legend_title="",
margin=dict(l=20, r=20, t=40, b=20),
)
st.plotly_chart(fig, use_container_width=True)
# Calculate revenue growth
revenue_growth = [(cash_flow_df['Revenue'].iloc[i] / cash_flow_df['Revenue'].iloc[i-1] - 1) * 100 if i > 0 else 0
for i in range(len(cash_flow_df))]
avg_growth = sum(revenue_growth[1:]) / len(revenue_growth[1:])
col1, col2 = st.columns(2)
with col1:
st.metric("Average Monthly Revenue Growth", f"{avg_growth:.1f}%")
with col2:
expense_growth = (cash_flow_df['Total_Expenses'].iloc[-1] / cash_flow_df['Total_Expenses'].iloc[0] - 1) * 100
st.metric("Total Expense Growth", f"{expense_growth:.1f}%", delta=f"{expense_growth - avg_growth:.1f}%", delta_color="inverse")
with tab3:
# Burn rate trend
fig = px.line(cash_flow_df, x='Month', y='Net_Burn',
title="Monthly Net Burn Trend",
labels={'Net_Burn': 'Net Burn ($)'},
color_discrete_sequence=['#dc3545'])
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Month",
yaxis_title="Net Burn ($)",
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
# Add efficiency ratio as a second y-axis
efficiency_ratio = [cash_flow_df['Revenue'].iloc[i] / cash_flow_df['Total_Expenses'].iloc[i] * 100
for i in range(len(cash_flow_df))]
fig.add_trace(go.Scatter(
x=cash_flow_df['Month'],
y=efficiency_ratio,
name='Efficiency Ratio (%)',
yaxis='y2',
line=dict(color='#0066cc', width=2, dash='dot')
))
fig.update_layout(
yaxis2=dict(
title='Efficiency Ratio (%)',
overlaying='y',
side='right',
range=[0, max(efficiency_ratio) * 1.2]
)
)
st.plotly_chart(fig, use_container_width=True)
with st.expander("🔎 Understanding Efficiency Ratio"):
st.info("The efficiency ratio measures how efficiently your startup is generating revenue relative to expenses. A higher percentage means you're getting more revenue per dollar spent. Venture-backed startups typically aim for at least 40% before Series B funding.")
# Expense breakdown
st.subheader("Expense Breakdown")
# Last month expenses
last_month = cash_flow_df.iloc[-1]
expense_categories = ['Payroll', 'Marketing', 'Office', 'Software', 'Travel', 'Legal', 'Misc']
expense_values = [last_month[cat] for cat in expense_categories]
col1, col2 = st.columns([2, 1])
with col1:
fig = px.pie(values=expense_values, names=expense_categories,
title="Current Month Expense Breakdown",
color_discrete_sequence=px.colors.sequential.Blues_r)
fig.update_layout(
height=400,
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
fig.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig, use_container_width=True)
with col2:
# Expense analysis
st.markdown("<h4>Expense Analysis</h4>", unsafe_allow_html=True)
# Calculate industry benchmarks (simulated)
benchmarks = {
"Payroll": "70-80%",
"Marketing": "10-15%",
"Office": "5-8%",
"Software": "3-5%"
}
# Create a table with expense categories, amounts, and % of total
expense_df = pd.DataFrame({
"Category": expense_categories,
"Amount": expense_values,
"% of Total": [v / sum(expense_values) * 100 for v in expense_values]
})
# Add benchmark column
expense_df["Industry Benchmark"] = expense_df["Category"].map(
lambda x: benchmarks.get(x, "N/A")
)
# Format the dataframe for display
formatted_df = expense_df.copy()
formatted_df["Amount"] = formatted_df["Amount"].apply(lambda x: f"${x:,.0f}")
formatted_df["% of Total"] = formatted_df["% of Total"].apply(lambda x: f"{x:.1f}%")
st.table(formatted_df)
# AI-powered spending optimization
with st.expander("💡 AI Spending Optimization"):
st.markdown("<span class='ai-badge'>AI Recommendation</span>", unsafe_allow_html=True)
# Use cache to avoid repeated API calls
spending_key = f"spending_{date.today().isoformat()}"
if spending_key not in st.session_state.insights_cache:
spending_recommendation = generate_ai_response("""
Based on your expense breakdown, recommend 2-3 specific ways to optimize spending to extend runway.
Focus on industry best practices for seed-stage startups.
""")
st.session_state.insights_cache[spending_key] = spending_recommendation
st.markdown(st.session_state.insights_cache[spending_key])
# Fundraising Readiness Assessment
st.subheader("Fundraising Readiness")
# Get AI analysis of fundraising readiness
fundraising_key = f"fundraising_{date.today().isoformat()}"
if fundraising_key not in st.session_state.insights_cache:
# Calculate metrics for assessment
runway_calc = startup_data['cash'] / (startup_data['burn_rate'] - startup_data['revenue'])
# Calculate some example metrics
try:
mrr_growth = (cash_flow_df['Revenue'].iloc[-1] / cash_flow_df['Revenue'].iloc[-2] - 1) * 100
gross_margin = (cash_flow_df['Revenue'].iloc[-1] - cash_flow_df['Total_Expenses'].iloc[-1] / 2) / cash_flow_df['Revenue'].iloc[-1] * 100
except:
mrr_growth = 5.0
gross_margin = 60.0
metrics = {
"MRR Growth": f"{mrr_growth:.1f}%",
"Gross Margin": f"{gross_margin:.1f}%",
"CAC": "$950", # Example value
"LTV": "$4,500", # Example value
"Churn": "3.2%", # Example value
}
metrics_text = "\n".join([f"- {k}: {v}" for k, v in metrics.items()])
fundraising_analysis = generate_ai_response(f"""
You are a startup fundraising advisor. Analyze this startup's readiness for their next funding round:
Company Profile:
- Stage: {startup_data['stage']}
- Last Funding: {startup_data['last_funding']}
- Current Cash: ${startup_data['cash']}
- Monthly Burn: ${startup_data['burn_rate']}
- Runway: {runway_calc:.1f} months
Key Metrics:
{metrics_text}
Provide a comprehensive fundraising readiness assessment:
1. Overall fundraising readiness score (0-10)
2. Assessment of current metrics compared to investor expectations for next round
3. Identify the 3 most critical metrics to improve before fundraising
4. Recommend specific targets for each key metric
5. Suggest timeline and specific milestones for fundraising preparation
6. Estimate reasonable valuation range based on metrics and market conditions
Be specific with numbers, timelines, and actionable targets.
""")
st.session_state.insights_cache[fundraising_key] = fundraising_analysis
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Fundraising Assessment</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[fundraising_key]}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Call-to-action for advisor
st.info("📅 Need personalized guidance on fundraising? Schedule a session with our AI financial advisor to get detailed recommendations.")
# Render Decision Simulator page
def render_decision_simulator():
"""Render the AI-powered decision simulator page"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data or select a sample startup.")
render_upload_page()
return
# Get the selected startup data
startup_data = st.session_state.startups[st.session_state.current_startup]['profile']
st.markdown("<h1 class='main-header'>Decision Simulator</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>AI-powered analysis of business decisions</p>", unsafe_allow_html=True)
# How AI helps with decision-making
with st.expander("ℹ️ How AI enhances your decision-making"):
st.markdown("""
### How AI Powers Your Decision Simulator
The decision simulator uses AI to help you make better strategic decisions:
- **Scenario Analysis**: Our AI model simulates multiple financial scenarios based on your input variables
- **Risk Assessment**: The system automatically evaluates risk levels based on your cash runway and growth metrics
- **Return Prediction**: AI algorithms predict potential returns on investments like hiring or marketing
- **Opportunity Cost Analysis**: The model compares different allocations of capital to maximize growth
- **Personalized Recommendations**: Based on your specific situation, the AI provides tailored alternatives
This helps founders make data-driven decisions with less guesswork, avoid costly mistakes, and optimize resource allocation.
""")
st.write("Test the financial impact of key business decisions before implementing them. Our AI advisor will analyze the risks and benefits.")
# Quick decision templates
st.subheader("Common Scenarios")
decision_templates = {
"Hiring Engineering Team": {
"description": "Evaluate the impact of growing your engineering team",
"new_hires": 3,
"new_marketing": 0,
"other_expenses": 2000,
"growth_impact": 0.02,
"question": "We're considering hiring 3 more engineers to accelerate product development. How will this affect our runway and what growth impact should we expect to justify this investment?"
},
"Marketing Expansion": {
"description": "Test increasing your marketing budget",
"new_hires": 0,
"new_marketing": 15000,
"other_expenses": 0,
"growth_impact": 0.04,
"question": "We want to increase our marketing spend by $15K/month to drive growth. What growth rate would we need to achieve to make this financially viable?"
},
"Office Expansion": {
"description": "Analyze the cost of moving to a larger office",
"new_hires": 0,
"new_marketing": 0,
"other_expenses": 8000,
"growth_impact": 0.01,
"question": "We're considering moving to a larger office space that would add $8K/month to our expenses. Is this justified at our current stage?"
},
"Custom Scenario": {
"description": "Create your own custom scenario",
"new_hires": 0,
"new_marketing": 0,
"other_expenses": 0,
"growth_impact": 0.0,
"question": ""
}
}
# Template selection
template_cols = st.columns(4)
selected_template = None
for i, (template_name, template) in enumerate(decision_templates.items()):
with template_cols[i]:
if st.button(f"{template_name}\n{template['description']}", key=f"template_{i}"):
selected_template = template_name" |