File size: 35,458 Bytes
e8ab00f 3a96637 e8ab00f afe3487 e8ab00f d0dde6e 798d668 e8ab00f 01db229 d0dde6e 477a67c 6862507 e8ab00f 01db229 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 4386762 e8ab00f 1dd3718 e8ab00f 1dd3718 e8ab00f 1dd3718 e8ab00f 1dd3718 e8ab00f 9f420d8 e8ab00f 9f420d8 e8ab00f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta, date
import requests
import google.generativeai as genai
# Constants
ENGINEER_SALARY = 10000 # Monthly cost per engineer ($120K/year)
# Initialize session state variables
if 'startups' not in st.session_state:
st.session_state.startups = {} # Dictionary to store startup data
if 'current_startup' not in st.session_state:
st.session_state.current_startup = None # Currently selected startup
if 'current_page' not in st.session_state:
st.session_state.current_page = 'upload' # Default page
if 'insights_cache' not in st.session_state:
st.session_state.insights_cache = {}
if 'chat_history' not in st.session_state:
st.session_state.chat_history = [
{"role": "assistant", "content": "Hi! I'm your AI financial advisor. How can I help with your startup's finances?"}
]
# Setup page config and styling
st.set_page_config(page_title="MONEYMINDSPilot", page_icon="๐ฐ", layout="wide")
# Apply custom styling
st.markdown("""
<style>
.main-header {font-size: 2.5rem; color: #0066cc; margin-bottom: 0.5rem;}
.sub-header {font-size: 1.5rem; color: #5c5c5c; margin-bottom: 1.5rem;}
.metric-card {background-color: #f8f9fa; border-radius: 10px; padding: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);}
.metric-label {font-size: 1rem; color: #5c5c5c;}
.metric-value {font-size: 1.8rem; color: #0066cc; font-weight: bold;}
.good-metric {color: #28a745;}
.warning-metric {color: #ffc107;}
.danger-metric {color: #dc3545;}
.title-box {background: linear-gradient(45deg, #0066cc, #66b3ff); padding: 20px; border-radius: 10px;
margin-bottom: 20px; text-align: center; color: white;}
.ai-badge {display: inline-block; background-color: #0066cc; color: white; border-radius: 4px;
padding: 2px 6px; font-size: 0.7rem; font-weight: bold; margin-bottom: 8px;}
.insight-card, .advisor-card {background-color: #f8f9fa; border-radius: 10px; padding: 15px;
margin-bottom: 20px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);}
div.stButton > button {width: 100%; padding: 10px; border: none; background-color: #E6F3FF;
color: #0066cc; border-radius: 10px; text-align: left; font-weight: bold;}
div.stButton > button:hover {background-color: #CCE5FF; color: #004080;}
</style>
""", unsafe_allow_html=True)
# AI Integration Functions
def initialize_gemini():
"""Initialize Google's Gemini AI with API key"""
try:
api_key = st.secrets.get("GEMINI_API_KEY", None)
if api_key:
genai.configure(api_key=api_key)
return True
else:
st.warning("Gemini API key not found. Using simulated responses.")
return False
except Exception as e:
st.error(f"Failed to initialize Gemini AI: {e}")
return False
def generate_ai_response(prompt, simulate=False):
"""Generate text using Google's Gemini AI"""
if simulate:
return "AI response simulation: Based on your financial data, I recommend focusing on extending runway, accelerating revenue growth, and preparing for your next funding round."
else:
try:
# Use the correct model name
model = genai.GenerativeModel('gemini-2.0-flash') # Updated model name
response = model.generate_content(prompt)
return response.text
except Exception as e:
st.error(f"Error generating AI response: {e}")
return "Sorry, I couldn't generate a response at this time."
def autoplay_audio(audio_content):
"""Generate HTML with audio player that auto-plays"""
b64 = base64.b64encode(audio_content).decode()
md = f"""
<audio controls autoplay>
<source src="data:audio/mp3;base64,{b64}" type="audio/mp3">
</audio>
"""
st.markdown(md, unsafe_allow_html=True)
def generate_voice_response(text, simulate=False):
"""Generate voice response using ElevenLabs API"""
if simulate:
return None
else:
try:
api_key = st.secrets.get("ELEVENLABS_API_KEY", None)
if not api_key:
return None
url = "https://api.elevenlabs.io/v1/text-to-speech/21m00Tcm4TlvDq8ikWAM" # Rachel voice
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": api_key
}
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 200:
return response.content
else:
st.error(f"Error with ElevenLabs API: {response.status_code}")
return None
except Exception as e:
st.error(f"Error generating voice response: {e}")
return None
# Utility Functions
def switch_page(page_name):
"""Function to switch between pages"""
st.session_state.current_page = page_name
st.rerun()
def calculate_runway(cash, burn_rate, revenue, growth_rate, months=24):
"""Calculate runway based on cash, burn, revenue and growth"""
current_date = datetime.now()
date_range = [current_date + timedelta(days=30*i) for i in range(months)]
cash_flow = []
monthly_revenue = revenue
for i in range(months):
net_burn = burn_rate - monthly_revenue
cash_flow.append(net_burn)
monthly_revenue *= (1 + growth_rate)
df = pd.DataFrame({
'Net_Burn': cash_flow,
'Cumulative_Cash': [cash - sum(cash_flow[:i+1]) for i in range(len(cash_flow))]
}, index=date_range)
negative_cash = df[df['Cumulative_Cash'] < 0]
runway_months = (negative_cash.index[0] - current_date).days // 30 if len(negative_cash) > 0 else months
return runway_months, df
def simulate_decision(cash, burn_rate, revenue, growth_rate,
additional_expenses, new_hires, marketing_increase, growth_impact):
"""
Simulate the financial impact of a business decision with AI-powered insights
Args:
- cash: Current cash balance
- burn_rate: Current monthly burn rate
- revenue: Current monthly revenue
- growth_rate: Current monthly growth rate
- additional_expenses: Proposed additional monthly expenses
- new_hires: Number of new hires
- marketing_increase: Proposed marketing budget increase
- growth_impact: Expected growth rate impact
Returns:
- current_runway: Current financial runway in months
- new_runway: Projected runway after proposed changes
- current_df: DataFrame with current financial projection
- new_df: DataFrame with projected financial scenario
- ai_analysis: AI-generated insights about the decision
"""
# Calculate current runway
current_runway, current_df = calculate_runway(cash, burn_rate, revenue, growth_rate)
# Calculate new financial parameters
new_burn_rate = burn_rate + additional_expenses + (new_hires * ENGINEER_SALARY) + marketing_increase
new_growth_rate = growth_rate + growth_impact
# Calculate new runway
new_runway, new_df = calculate_runway(cash, new_burn_rate, revenue, new_growth_rate)
# Generate AI analysis of the decision
try:
ai_analysis = generate_ai_response(f"""
You are a strategic financial advisor for startups. Analyze this potential business decision:
Current Financial Situation:
- Cash Balance: ${cash:,}
- Monthly Burn Rate: ${burn_rate:,}
- Monthly Revenue: ${revenue:,}
- Current Growth Rate: {growth_rate * 100:.1f}%
- Current Runway: {current_runway} months
Proposed Changes:
- Additional Expenses: ${additional_expenses:,}/month
- New Hires: {new_hires} engineers (${new_hires * ENGINEER_SALARY:,}/month)
- Marketing Budget Increase: ${marketing_increase:,}/month
- Expected Growth Impact: +{growth_impact * 100:.1f}%
Projected Outcome:
- New Burn Rate: ${new_burn_rate:,}/month
- New Growth Rate: {new_growth_rate * 100:.1f}%
- Projected Runway: {new_runway} months
Provide a comprehensive analysis addressing:
1. Financial feasibility of the proposed changes
2. Risk assessment
3. Potential strategic benefits
4. Recommendations for optimization
5. Key metrics to monitor
Be direct, specific, and provide actionable insights.
""", simulate=False)
except Exception as e:
ai_analysis = f"AI analysis unavailable. Error: {str(e)}"
return current_runway, new_runway, current_df, new_df, ai_analysis
def detect_suspicious_transactions(transactions_df):
"""AI-enhanced suspicious transaction detection"""
df = transactions_df.copy()
# Define thresholds for each category
category_thresholds = {
"Travel": 3000, "Marketing": 10000, "Office": 7000,
"Software": 6000, "Consulting": 5000, "Legal": 6000
}
suspicious_terms = ['luxury', 'cruise', 'premium', 'personal', 'gift']
# Add analysis columns
df['Suspicious'] = False
df['Reason'] = ""
df['Risk_Score'] = 0
for idx, row in df.iterrows():
reasons = []
risk_score = 0
# Check category thresholds
if row['Category'] in category_thresholds and row['Amount'] > category_thresholds[row['Category']]:
reasons.append(f"Amount exceeds typical spending for {row['Category']}")
risk_score += 30
# Check for suspicious terms
for field in ['Vendor', 'Description']:
if any(term in str(row[field]).lower() for term in suspicious_terms):
reasons.append(f"{field} contains suspicious term")
risk_score += 20
# Check for round amounts
if row['Amount'] % 1000 == 0 and row['Amount'] > 3000:
reasons.append(f"Suspiciously round amount")
risk_score += 15
# Mark as suspicious if risk score is high enough
if risk_score >= 30:
df.at[idx, 'Suspicious'] = True
df.at[idx, 'Reason'] = "; ".join(reasons)
df.at[idx, 'Risk_Score'] = risk_score
return df.sort_values(by='Risk_Score', ascending=False)
def parse_csv_to_df(file):
"""Parse uploaded CSV file to DataFrame"""
try:
df = pd.read_csv(file)
return df, None
except Exception as e:
return None, f"Error parsing CSV: {e}"
# Navigation
def create_sidebar():
with st.sidebar:
st.markdown("""
<div class="title-box">
<h1>๐ฐ StartupFinancePilot</h1>
<p>AI-powered financial assistant for startups</p>
</div>
""", unsafe_allow_html=True)
# Startup selector
if st.session_state.startups:
st.subheader("Selected Startup")
startup_names = list(st.session_state.startups.keys())
selected_startup = st.selectbox(
"Choose Startup",
startup_names,
index=startup_names.index(st.session_state.current_startup) if st.session_state.current_startup in startup_names else 0
)
st.session_state.current_startup = selected_startup
# Show basic startup info
if selected_startup in st.session_state.startups:
startup_data = st.session_state.startups[selected_startup]['profile']
st.markdown(f"""
**Stage:** {startup_data['stage']}
**Cash:** ${startup_data['cash']:,}
**Monthly Burn:** ${startup_data['burn_rate']:,}
**Monthly Revenue:** ${startup_data['revenue']:,}
""")
st.markdown("<hr>", unsafe_allow_html=True)
# Navigation buttons
if st.button("๐ค Upload Startup Data", use_container_width=True):
switch_page('upload')
if st.button("๐ Financial Dashboard", use_container_width=True):
switch_page('dashboard')
if st.button("๐ฎ Decision Simulator", use_container_width=True):
switch_page('simulator')
if st.button("๐ต๏ธ Fund Monitoring", use_container_width=True):
switch_page('monitoring')
if st.button("๐ค AI Financial Advisor", use_container_width=True):
switch_page('advisor')
# Page Renderers
def render_upload_page():
"""Render the upload page for startup data"""
st.markdown("<h1 class='main-header'>Upload Your Startup Data</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>Upload CSV files to get started</p>", unsafe_allow_html=True)
with st.expander("Upload Instructions", expanded=False):
st.markdown("""
### How to Upload Your Startup Data
You can upload three types of files:
1. **Company Profile** - A CSV with basic information about your startup including:
- name, stage, founded, employees, last_funding, cash, burn_rate, revenue, growth_rate
2. **Cash Flow Data** - A CSV with monthly cash flow data with columns:
- Month, Revenue, Payroll, Marketing, Office, Software, Travel, Legal, Misc
3. **Transaction Data** - A CSV with transaction details:
- Date, Category, Vendor, Amount, Description, Flag
""")
startup_name = st.text_input("Startup Name", value="My Startup")
col1, col2, col3 = st.columns(3)
with col1:
profile_file = st.file_uploader("Upload Company Profile (CSV)", type=['csv'])
with col2:
cash_flow_file = st.file_uploader("Upload Cash Flow Data (CSV)", type=['csv'])
with col3:
transactions_file = st.file_uploader("Upload Transactions Data (CSV)", type=['csv'])
# Process the files if uploaded
if st.button("Process Data"):
# Initialize with default values
startup_data = {
"name": startup_name,
"stage": "Seed",
"founded": "12 months ago",
"employees": 5,
"last_funding": "Not specified",
"cash": 100000,
"burn_rate": 20000,
"revenue": 5000,
"growth_rate": 0.05
}
cash_flow_df = None
transactions_df = None
# Parse company profile
if profile_file:
profile_df, error = parse_csv_to_df(profile_file)
if error:
st.error(error)
elif len(profile_df) > 0:
startup_data.update(profile_df.iloc[0].to_dict())
st.success(f"Successfully loaded company profile")
# Parse cash flow data
if cash_flow_file:
cash_flow_df, error = parse_csv_to_df(cash_flow_file)
if error:
st.error(error)
else:
if "Total_Expenses" not in cash_flow_df.columns:
expense_columns = [col for col in cash_flow_df.columns if col not in ["Month", "Revenue", "Total_Expenses", "Net_Burn"]]
cash_flow_df["Total_Expenses"] = cash_flow_df[expense_columns].sum(axis=1)
if "Net_Burn" not in cash_flow_df.columns:
cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"]
st.success("Successfully loaded cash flow data")
# Parse transactions data
if transactions_file:
transactions_df, error = parse_csv_to_df(transactions_file)
if error:
st.error(error)
else:
# Ensure transactions data has required columns
required_columns = ["Date", "Category", "Vendor", "Amount", "Description"]
if all(col in transactions_df.columns for col in required_columns):
if "Flag" not in transactions_df.columns:
transactions_df["Flag"] = "Normal"
st.success("Successfully loaded transactions data")
else:
st.error("Transactions file is missing required columns")
# Save to session state if we have at least some data
if profile_file:
# Store in session state
st.session_state.startups[startup_data['name']] = {
'profile': startup_data,
'cash_flow': cash_flow_df,
'transactions': transactions_df
}
# Set as current startup
st.session_state.current_startup = startup_data['name']
st.success(f"Successfully added {startup_data['name']} to your startups")
switch_page('dashboard')
else:
st.error("Please upload at least a company profile file")
def render_financial_dashboard():
"""Render the AI-powered financial dashboard page"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data first.")
render_upload_page()
return
# Get the selected startup data
startup_data = st.session_state.startups[st.session_state.current_startup]['profile']
cash_flow_df = st.session_state.startups[st.session_state.current_startup]['cash_flow']
st.markdown("<h1 class='main-header'>Financial Dashboard</h1>", unsafe_allow_html=True)
# AI Insights
insights_key = f"dashboard_{date.today().isoformat()}"
if insights_key not in st.session_state.insights_cache:
insights = generate_ai_response(f"""
You are a financial advisor for startups. Based on this startup's data:
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
Provide the top 3 most important financial insights that the founder should know today.
Format each insight as a brief, action-oriented bullet point.
""")
st.session_state.insights_cache[insights_key] = insights
with st.expander("๐ AI Financial Insights", expanded=True):
st.markdown("<span class='ai-badge'>AI-Generated Insights</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[insights_key])
# Key metrics
col1, col2, col3, col4 = st.columns(4)
# Calculate runway
runway_months, runway_df = calculate_runway(
startup_data['cash'],
startup_data['burn_rate'],
startup_data['revenue'],
startup_data['growth_rate']
)
# Determine status colors
runway_status = "danger-metric" if runway_months < 6 else ("warning-metric" if runway_months < 9 else "good-metric")
burn_status = "danger-metric" if startup_data['burn_rate'] > 100000 else ("warning-metric" if startup_data['burn_rate'] > 80000 else "good-metric")
revenue_status = "good-metric" if startup_data['revenue'] > 20000 else ("warning-metric" if startup_data['revenue'] > 10000 else "danger-metric")
with col1:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Current Cash</p>
<p class='metric-value'>${startup_data['cash']:,}</p>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Monthly Burn</p>
<p class='metric-value {burn_status}'>${startup_data['burn_rate']:,}</p>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Monthly Revenue</p>
<p class='metric-value {revenue_status}'>${startup_data['revenue']:,}</p>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Runway</p>
<p class='metric-value {runway_status}'>{runway_months} months</p>
</div>
""", unsafe_allow_html=True)
# Financial charts
st.subheader("Financial Overview")
# Display only if we have cash flow data
if cash_flow_df is not None:
# Runway chart
fig = px.line(runway_df.reset_index(), x='index', y='Cumulative_Cash',
title="Cash Runway Projection",
labels={'index': 'Date', 'Cumulative_Cash': 'Remaining Cash ($)'},
color_discrete_sequence=['#0066cc'])
fig.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Out of Cash")
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Revenue vs Expenses
fig = px.bar(cash_flow_df, x='Month', y=['Revenue', 'Total_Expenses'],
title="Revenue vs. Expenses",
barmode='group',
color_discrete_sequence=['#28a745', '#dc3545'])
st.plotly_chart(fig, use_container_width=True)
else:
st.info("Upload cash flow data to see detailed financial charts")
def render_decision_simulator(startup_data):
"""Render the decision simulator page"""
st.markdown("<h1 class='main-header'>Decision Simulator</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>Test the financial impact of business decisions</p>", unsafe_allow_html=True)
# Decision input form
with st.form("decision_form"):
st.subheader("Scenario Parameters")
col1, col2 = st.columns(2)
with col1:
new_hires = st.number_input("New Engineering Hires", min_value=0, max_value=10, value=0)
st.caption(f"Monthly Cost: ${new_hires * ENGINEER_SALARY:,}")
new_marketing = st.number_input("Additional Monthly Marketing Budget",
min_value=0, max_value=50000, value=0, step=1000)
with col2:
other_expenses = st.number_input("Other Additional Monthly Expenses",
min_value=0, max_value=50000, value=0, step=1000)
growth_impact = st.slider("Estimated Impact on Monthly Growth Rate",
min_value=0.0, max_value=0.10, value=0.0, step=0.01,
format="%.2f")
question = st.text_area("Describe your decision scenario", height=100)
decision_summary = f"""
- {new_hires} new engineers: ${new_hires * ENGINEER_SALARY:,}/month
- Marketing increase: ${new_marketing:,}/month
- Other expenses: ${other_expenses:,}/month
- Total additional burn: ${new_hires * ENGINEER_SALARY + new_marketing + other_expenses:,}/month
- Growth impact: +{growth_impact * 100:.1f}% monthly growth
"""
st.markdown(f"**Decision Summary:**\n{decision_summary}")
submitted = st.form_submit_button("Simulate Decision")
if submitted:
# Calculate current and new runway with AI analysis
current_runway, new_runway, current_df, new_df, ai_analysis = simulate_decision(
startup_data['cash'],
startup_data['burn_rate'],
startup_data['revenue'],
startup_data['growth_rate'],
other_expenses,
new_hires,
new_marketing,
growth_impact
)
# Display results
st.markdown("<h3>Decision Impact Analysis</h3>", unsafe_allow_html=True)
# Summary metrics (existing code remains the same)
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Current Runway", f"{current_runway} months")
with col2:
runway_change = new_runway - current_runway
st.metric("New Runway", f"{new_runway} months",
delta=f"{runway_change} months",
delta_color="off" if runway_change == 0 else ("normal" if runway_change > 0 else "inverse"))
with col3:
new_burn = startup_data['burn_rate'] + other_expenses + (new_hires * ENGINEER_SALARY) + new_marketing
burn_change = new_burn - startup_data['burn_rate']
burn_percentage = burn_change / startup_data['burn_rate'] * 100
st.metric("New Monthly Burn", f"${new_burn:,}",
delta=f"${burn_change:,} ({burn_percentage:.1f}%)",
delta_color="inverse")
# Cash projection comparison (existing code remains the same)
st.subheader("Cash Projection Comparison")
# Combine dataframes for comparison
current_df['Scenario'] = 'Current'
new_df['Scenario'] = 'After Decision'
combined_df = pd.concat([current_df, new_df])
combined_df = combined_df.reset_index()
combined_df = combined_df.rename(columns={'index': 'Date'})
# Plot comparison
fig = px.line(combined_df, x='Date', y='Cumulative_Cash', color='Scenario',
title="Cash Runway Comparison",
labels={'Cumulative_Cash': 'Remaining Cash'},
color_discrete_sequence=['#4c78a8', '#f58518'])
fig.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Out of Cash")
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Display AI Analysis (New section)
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Decision Analysis</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{ai_analysis}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
def render_fund_monitoring():
"""Render the fund monitoring page"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data first.")
render_upload_page()
return
# Get the selected startup data
transactions_df = st.session_state.startups[st.session_state.current_startup]['transactions']
st.markdown("<h1 class='main-header'>Fund Monitoring</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>AI-powered fraud detection and spending analysis</p>", unsafe_allow_html=True)
if transactions_df is None:
st.warning("No transaction data available. Please upload transaction data.")
return
# Process transactions to detect suspicious ones
processed_df = detect_suspicious_transactions(transactions_df)
# Summary metrics
total_transactions = len(processed_df)
suspicious_transactions = processed_df[processed_df['Suspicious']].copy()
suspicious_count = len(suspicious_transactions)
suspicious_amount = suspicious_transactions['Amount'].sum() if not suspicious_transactions.empty else 0
total_amount = processed_df['Amount'].sum()
col1, col2 = st.columns(2)
with col1:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Total Transactions</p>
<p class='metric-value'>{total_transactions}</p>
</div>
""", unsafe_allow_html=True)
with col2:
flagged_percent = suspicious_count/total_transactions*100 if total_transactions > 0 else 0
status = "danger-metric" if flagged_percent > 10 else ("warning-metric" if flagged_percent > 5 else "good-metric")
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Flagged Transactions</p>
<p class='metric-value {status}'>{suspicious_count} ({flagged_percent:.1f}%)</p>
</div>
""", unsafe_allow_html=True)
# Tabs for different views
tab1, tab2 = st.tabs(["Flagged Transactions", "All Transactions"])
with tab1:
if suspicious_count > 0:
st.dataframe(
suspicious_transactions[['Date', 'Category', 'Vendor', 'Amount', 'Description', 'Risk_Score', 'Reason']],
use_container_width=True
)
# Get AI analysis of suspicious transactions
fraud_key = f"fraud_{date.today().isoformat()}"
if fraud_key not in st.session_state.insights_cache:
suspicious_text = "\n".join([
f"- {row['Vendor']} (${row['Amount']:.2f}): {row['Description']}"
for _, row in suspicious_transactions.head(5).iterrows()
])
fraud_analysis = generate_ai_response(f"""
You are a financial fraud detection expert. Review these flagged suspicious transactions:
{suspicious_text}
Provide a brief analysis and recommendations.
""")
st.session_state.insights_cache[fraud_key] = fraud_analysis
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Fraud Analysis</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[fraud_key]}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
else:
st.success("No suspicious transactions detected.")
with tab2:
st.dataframe(processed_df[['Date', 'Category', 'Vendor', 'Amount', 'Description', 'Suspicious', 'Risk_Score']],
use_container_width=True)
# Category spending
if not processed_df.empty:
st.subheader("Spending by Category")
category_spending = processed_df.groupby('Category')['Amount'].sum().reset_index()
fig = px.bar(category_spending, x='Category', y='Amount',
title="Spending by Category",
color='Amount',
color_continuous_scale='Blues')
st.plotly_chart(fig, use_container_width=True)
def render_ai_financial_advisor():
"""Render the AI financial advisor page with voice chat"""
if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups:
st.warning("No startup selected. Please upload data first.")
return
startup_data = st.session_state.startups[st.session_state.current_startup]['profile']
st.markdown("<h1 class='main-header'>AI Financial Advisor</h1>", unsafe_allow_html=True)
# Chat container
st.markdown("<div style='background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>", unsafe_allow_html=True)
# Display chat history
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div style='background-color: #e6f7ff; padding: 10px; border-radius: 10px; margin-bottom: 10px;'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div style='background-color: #f0f7ff; padding: 10px; border-radius: 10px; margin-bottom: 10px;'><strong>Financial Advisor:</strong> {message['content']}</div>", unsafe_allow_html=True)
# Show play button for voice if it exists
if 'audio' in message and message['audio']:
try:
st.audio(message['audio'], format='audio/mp3')
except Exception as e:
st.error(f"Error playing audio: {e}")
# Input for new message
col1, col2 = st.columns([5, 1])
with col1:
user_input = st.text_input("Ask a financial question", key="user_question")
with col2:
use_voice = st.checkbox("Voice", value=True)
# Common financial questions
st.markdown("### Common Questions")
question_cols = st.columns(3)
common_questions = [
"How much runway do we have?",
"When should we start fundraising?",
"How can we optimize our burn rate?"
]
for i, question in enumerate(common_questions):
with question_cols[i % 3]:
if st.button(question, key=f"q_{i}"):
user_input = question
# Process user input
if user_input:
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Get AI response
response = generate_ai_response(f"""
You are a strategic financial advisor for startups. A founder asks:
"{user_input}"
Here's their current financial situation:
- Stage: {startup_data['stage']}
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
- Last funding: {startup_data['last_funding']}
Provide concise, actionable advice.
""")
# Generate voice response if enabled
audio_data = None
if use_voice:
with st.spinner("Generating voice response..."):
audio_data = generate_voice_response(response)
# Add AI response to chat history
st.session_state.chat_history.append({
"role": "assistant",
"content": response,
"audio": audio_data
})
# Rerun to display updated chat
st.rerun()
st.markdown("</div>", unsafe_allow_html=True)
def main():
# Create sidebar navigation
create_sidebar()
# Render the correct page based on session state
if st.session_state.current_page == 'upload':
render_upload_page()
elif st.session_state.current_page == 'dashboard':
render_financial_dashboard()
elif st.session_state.current_page == 'simulator':
# Pass the current startup's data
render_decision_simulator(
st.session_state.startups[st.session_state.current_startup]['profile']
)
elif st.session_state.current_page == 'monitoring':
render_fund_monitoring()
elif st.session_state.current_page == 'advisor':
render_ai_financial_advisor()
if __name__ == "__main__":
main() |