import streamlit as st import pandas as pd import numpy as np import plotly.express as px import plotly.graph_objects as go from datetime import datetime, timedelta, date import requests import google.generativeai as genai # Constants ENGINEER_SALARY = 10000 # Monthly cost per engineer ($120K/year) # Initialize session state variables if 'startups' not in st.session_state: st.session_state.startups = {} # Dictionary to store startup data if 'current_startup' not in st.session_state: st.session_state.current_startup = None # Currently selected startup if 'current_page' not in st.session_state: st.session_state.current_page = 'upload' # Default page if 'insights_cache' not in st.session_state: st.session_state.insights_cache = {} if 'chat_history' not in st.session_state: st.session_state.chat_history = [ {"role": "assistant", "content": "Hi! I'm your AI financial advisor. How can I help with your startup's finances?"} ] # Setup page config and styling st.set_page_config(page_title="MONEYMINDSPilot", page_icon="💰", layout="wide") # Apply custom styling st.markdown(""" """, unsafe_allow_html=True) # AI Integration Functions def initialize_gemini(): """Initialize Google's Gemini AI with API key""" try: api_key = st.secrets.get("GEMINI_API_KEY", None) if api_key: genai.configure(api_key=api_key) return True else: st.warning("Gemini API key not found. Using simulated responses.") return False except Exception as e: st.error(f"Failed to initialize Gemini AI: {e}") return False def generate_ai_response(prompt, simulate=False): """Generate text using Google's Gemini AI""" if simulate: return "AI response simulation: Based on your financial data, I recommend focusing on extending runway, accelerating revenue growth, and preparing for your next funding round." else: try: # Use the correct model name model = genai.GenerativeModel('gemini-2.0-flash') # Updated model name response = model.generate_content(prompt) return response.text except Exception as e: st.error(f"Error generating AI response: {e}") return "Sorry, I couldn't generate a response at this time." def autoplay_audio(audio_content): """Generate HTML with audio player that auto-plays""" b64 = base64.b64encode(audio_content).decode() md = f""" """ st.markdown(md, unsafe_allow_html=True) def generate_voice_response(text, simulate=False): """Generate voice response using ElevenLabs API""" if simulate: return None else: try: api_key = st.secrets.get("ELEVENLABS_API_KEY", None) if not api_key: return None url = "https://api.elevenlabs.io/v1/text-to-speech/21m00Tcm4TlvDq8ikWAM" # Rachel voice headers = { "Accept": "audio/mpeg", "Content-Type": "application/json", "xi-api-key": api_key } data = { "text": text, "model_id": "eleven_monolingual_v1", "voice_settings": { "stability": 0.5, "similarity_boost": 0.5 } } response = requests.post(url, json=data, headers=headers) if response.status_code == 200: return response.content else: st.error(f"Error with ElevenLabs API: {response.status_code}") return None except Exception as e: st.error(f"Error generating voice response: {e}") return None # Utility Functions def switch_page(page_name): """Function to switch between pages""" st.session_state.current_page = page_name st.rerun() def calculate_runway(cash, burn_rate, revenue, growth_rate, months=24): """Calculate runway based on cash, burn, revenue and growth""" current_date = datetime.now() date_range = [current_date + timedelta(days=30*i) for i in range(months)] cash_flow = [] monthly_revenue = revenue for i in range(months): net_burn = burn_rate - monthly_revenue cash_flow.append(net_burn) monthly_revenue *= (1 + growth_rate) df = pd.DataFrame({ 'Net_Burn': cash_flow, 'Cumulative_Cash': [cash - sum(cash_flow[:i+1]) for i in range(len(cash_flow))] }, index=date_range) negative_cash = df[df['Cumulative_Cash'] < 0] runway_months = (negative_cash.index[0] - current_date).days // 30 if len(negative_cash) > 0 else months return runway_months, df def simulate_decision(cash, burn_rate, revenue, growth_rate, additional_expenses, new_hires, marketing_increase, growth_impact): """ Simulate the financial impact of a business decision with AI-powered insights Args: - cash: Current cash balance - burn_rate: Current monthly burn rate - revenue: Current monthly revenue - growth_rate: Current monthly growth rate - additional_expenses: Proposed additional monthly expenses - new_hires: Number of new hires - marketing_increase: Proposed marketing budget increase - growth_impact: Expected growth rate impact Returns: - current_runway: Current financial runway in months - new_runway: Projected runway after proposed changes - current_df: DataFrame with current financial projection - new_df: DataFrame with projected financial scenario - ai_analysis: AI-generated insights about the decision """ # Calculate current runway current_runway, current_df = calculate_runway(cash, burn_rate, revenue, growth_rate) # Calculate new financial parameters new_burn_rate = burn_rate + additional_expenses + (new_hires * ENGINEER_SALARY) + marketing_increase new_growth_rate = growth_rate + growth_impact # Calculate new runway new_runway, new_df = calculate_runway(cash, new_burn_rate, revenue, new_growth_rate) # Generate AI analysis of the decision try: ai_analysis = generate_ai_response(f""" You are a strategic financial advisor for startups. Analyze this potential business decision: Current Financial Situation: - Cash Balance: ${cash:,} - Monthly Burn Rate: ${burn_rate:,} - Monthly Revenue: ${revenue:,} - Current Growth Rate: {growth_rate * 100:.1f}% - Current Runway: {current_runway} months Proposed Changes: - Additional Expenses: ${additional_expenses:,}/month - New Hires: {new_hires} engineers (${new_hires * ENGINEER_SALARY:,}/month) - Marketing Budget Increase: ${marketing_increase:,}/month - Expected Growth Impact: +{growth_impact * 100:.1f}% Projected Outcome: - New Burn Rate: ${new_burn_rate:,}/month - New Growth Rate: {new_growth_rate * 100:.1f}% - Projected Runway: {new_runway} months Provide a comprehensive analysis addressing: 1. Financial feasibility of the proposed changes 2. Risk assessment 3. Potential strategic benefits 4. Recommendations for optimization 5. Key metrics to monitor Be direct, specific, and provide actionable insights. """, simulate=False) except Exception as e: ai_analysis = f"AI analysis unavailable. Error: {str(e)}" return current_runway, new_runway, current_df, new_df, ai_analysis def detect_suspicious_transactions(transactions_df): """AI-enhanced suspicious transaction detection""" df = transactions_df.copy() # Define thresholds for each category category_thresholds = { "Travel": 3000, "Marketing": 10000, "Office": 7000, "Software": 6000, "Consulting": 5000, "Legal": 6000 } suspicious_terms = ['luxury', 'cruise', 'premium', 'personal', 'gift'] # Add analysis columns df['Suspicious'] = False df['Reason'] = "" df['Risk_Score'] = 0 for idx, row in df.iterrows(): reasons = [] risk_score = 0 # Check category thresholds if row['Category'] in category_thresholds and row['Amount'] > category_thresholds[row['Category']]: reasons.append(f"Amount exceeds typical spending for {row['Category']}") risk_score += 30 # Check for suspicious terms for field in ['Vendor', 'Description']: if any(term in str(row[field]).lower() for term in suspicious_terms): reasons.append(f"{field} contains suspicious term") risk_score += 20 # Check for round amounts if row['Amount'] % 1000 == 0 and row['Amount'] > 3000: reasons.append(f"Suspiciously round amount") risk_score += 15 # Mark as suspicious if risk score is high enough if risk_score >= 30: df.at[idx, 'Suspicious'] = True df.at[idx, 'Reason'] = "; ".join(reasons) df.at[idx, 'Risk_Score'] = risk_score return df.sort_values(by='Risk_Score', ascending=False) def parse_csv_to_df(file): """Parse uploaded CSV file to DataFrame""" try: df = pd.read_csv(file) return df, None except Exception as e: return None, f"Error parsing CSV: {e}" # Navigation def create_sidebar(): with st.sidebar: st.markdown("""
AI-powered financial assistant for startups
Upload CSV files to get started
", unsafe_allow_html=True) with st.expander("Upload Instructions", expanded=False): st.markdown(""" ### How to Upload Your Startup Data You can upload three types of files: 1. **Company Profile** - A CSV with basic information about your startup including: - name, stage, founded, employees, last_funding, cash, burn_rate, revenue, growth_rate 2. **Cash Flow Data** - A CSV with monthly cash flow data with columns: - Month, Revenue, Payroll, Marketing, Office, Software, Travel, Legal, Misc 3. **Transaction Data** - A CSV with transaction details: - Date, Category, Vendor, Amount, Description, Flag """) startup_name = st.text_input("Startup Name", value="My Startup") col1, col2, col3 = st.columns(3) with col1: profile_file = st.file_uploader("Upload Company Profile (CSV)", type=['csv']) with col2: cash_flow_file = st.file_uploader("Upload Cash Flow Data (CSV)", type=['csv']) with col3: transactions_file = st.file_uploader("Upload Transactions Data (CSV)", type=['csv']) # Process the files if uploaded if st.button("Process Data"): # Initialize with default values startup_data = { "name": startup_name, "stage": "Seed", "founded": "12 months ago", "employees": 5, "last_funding": "Not specified", "cash": 100000, "burn_rate": 20000, "revenue": 5000, "growth_rate": 0.05 } cash_flow_df = None transactions_df = None # Parse company profile if profile_file: profile_df, error = parse_csv_to_df(profile_file) if error: st.error(error) elif len(profile_df) > 0: startup_data.update(profile_df.iloc[0].to_dict()) st.success(f"Successfully loaded company profile") # Parse cash flow data if cash_flow_file: cash_flow_df, error = parse_csv_to_df(cash_flow_file) if error: st.error(error) else: if "Total_Expenses" not in cash_flow_df.columns: expense_columns = [col for col in cash_flow_df.columns if col not in ["Month", "Revenue", "Total_Expenses", "Net_Burn"]] cash_flow_df["Total_Expenses"] = cash_flow_df[expense_columns].sum(axis=1) if "Net_Burn" not in cash_flow_df.columns: cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"] st.success("Successfully loaded cash flow data") # Parse transactions data if transactions_file: transactions_df, error = parse_csv_to_df(transactions_file) if error: st.error(error) else: # Ensure transactions data has required columns required_columns = ["Date", "Category", "Vendor", "Amount", "Description"] if all(col in transactions_df.columns for col in required_columns): if "Flag" not in transactions_df.columns: transactions_df["Flag"] = "Normal" st.success("Successfully loaded transactions data") else: st.error("Transactions file is missing required columns") # Save to session state if we have at least some data if profile_file: # Store in session state st.session_state.startups[startup_data['name']] = { 'profile': startup_data, 'cash_flow': cash_flow_df, 'transactions': transactions_df } # Set as current startup st.session_state.current_startup = startup_data['name'] st.success(f"Successfully added {startup_data['name']} to your startups") switch_page('dashboard') else: st.error("Please upload at least a company profile file") def render_financial_dashboard(): """Render the AI-powered financial dashboard page""" if not st.session_state.current_startup or st.session_state.current_startup not in st.session_state.startups: st.warning("No startup selected. Please upload data first.") render_upload_page() return # Get the selected startup data startup_data = st.session_state.startups[st.session_state.current_startup]['profile'] cash_flow_df = st.session_state.startups[st.session_state.current_startup]['cash_flow'] st.markdown("Current Cash
${startup_data['cash']:,}
Monthly Burn
${startup_data['burn_rate']:,}
Monthly Revenue
${startup_data['revenue']:,}
Runway
{runway_months} months
Test the financial impact of business decisions
", unsafe_allow_html=True) # Decision input form with st.form("decision_form"): st.subheader("Scenario Parameters") col1, col2 = st.columns(2) with col1: new_hires = st.number_input("New Engineering Hires", min_value=0, max_value=10, value=0) st.caption(f"Monthly Cost: ${new_hires * ENGINEER_SALARY:,}") new_marketing = st.number_input("Additional Monthly Marketing Budget", min_value=0, max_value=50000, value=0, step=1000) with col2: other_expenses = st.number_input("Other Additional Monthly Expenses", min_value=0, max_value=50000, value=0, step=1000) growth_impact = st.slider("Estimated Impact on Monthly Growth Rate", min_value=0.0, max_value=0.10, value=0.0, step=0.01, format="%.2f") question = st.text_area("Describe your decision scenario", height=100) decision_summary = f""" - {new_hires} new engineers: ${new_hires * ENGINEER_SALARY:,}/month - Marketing increase: ${new_marketing:,}/month - Other expenses: ${other_expenses:,}/month - Total additional burn: ${new_hires * ENGINEER_SALARY + new_marketing + other_expenses:,}/month - Growth impact: +{growth_impact * 100:.1f}% monthly growth """ st.markdown(f"**Decision Summary:**\n{decision_summary}") submitted = st.form_submit_button("Simulate Decision") if submitted: # Calculate current and new runway with AI analysis current_runway, new_runway, current_df, new_df, ai_analysis = simulate_decision( startup_data['cash'], startup_data['burn_rate'], startup_data['revenue'], startup_data['growth_rate'], other_expenses, new_hires, new_marketing, growth_impact ) # Display results st.markdown("{ai_analysis}
", unsafe_allow_html=True) st.markdown("AI-powered fraud detection and spending analysis
", unsafe_allow_html=True) if transactions_df is None: st.warning("No transaction data available. Please upload transaction data.") return # Process transactions to detect suspicious ones processed_df = detect_suspicious_transactions(transactions_df) # Summary metrics total_transactions = len(processed_df) suspicious_transactions = processed_df[processed_df['Suspicious']].copy() suspicious_count = len(suspicious_transactions) suspicious_amount = suspicious_transactions['Amount'].sum() if not suspicious_transactions.empty else 0 total_amount = processed_df['Amount'].sum() col1, col2 = st.columns(2) with col1: st.markdown(f"""Total Transactions
{total_transactions}
Flagged Transactions
{suspicious_count} ({flagged_percent:.1f}%)
{st.session_state.insights_cache[fraud_key]}
", unsafe_allow_html=True) st.markdown("