File size: 4,152 Bytes
a3e7179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import pandas as pd
import os
# Create data directory if it doesn't exist
os.makedirs('data', exist_ok=True)
# TechHealth AI data
company_data = {
"name": "TechHealth AI",
"stage": "Seed",
"founded": "18 months ago",
"employees": 12,
"last_funding": "$1.2M seed round 10 months ago",
"cash": 320000,
"burn_rate": 85000,
"revenue": 15000,
"growth_rate": 0.08
}
# Save company data
pd.DataFrame([company_data]).to_csv('data/startup_data.csv', index=False)
# Cash flow history
cash_flow_data = {
"Month": [f"Month {i}" for i in range(1, 11)],
"Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800],
"Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000],
"Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000],
"Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000],
"Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200],
"Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000],
"Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200],
"Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800]
}
# Add calculated fields
df = pd.DataFrame(cash_flow_data)
df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"]
# Save cash flow data
df.to_csv('data/projections.csv', index=False)
# Transaction data
transactions = pd.DataFrame([
{"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"},
{"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"},
{"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"},
{"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"},
{"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"},
{"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"},
{"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
{"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"},
{"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"},
{"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"},
{"Date": "2024-01-05", "Category": "Travel", "Vendor": "Delta Airlines", "Amount": 1200, "Description": "Client Meeting Travel", "Flag": "Normal"},
{"Date": "2024-01-10", "Category": "Marketing", "Vendor": "Facebook Ads", "Amount": 4500, "Description": "Social Media Campaign", "Flag": "Normal"},
{"Date": "2024-01-15", "Category": "Software", "Vendor": "Atlassian", "Amount": 2800, "Description": "Development Tools", "Flag": "Normal"},
{"Date": "2024-01-20", "Category": "Payroll", "Vendor": "January Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
{"Date": "2024-01-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"}
])
# Save transactions data
transactions.to_csv('data/transactions.csv', index=False)
# Create a separate file for suspicious transactions for easier analysis
suspicious = transactions[transactions['Flag'] == 'Suspicious']
suspicious.to_csv('data/suspicious.csv', index=False)
print("Sample data files have been created in the 'data' directory.")
|