File size: 18,781 Bytes
5b593c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import os
from datetime import datetime, timedelta, date
import time
import json
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
# Initialize page configuration
st.set_page_config(
page_title="StartupFinancePilot",
page_icon="💰",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #0066cc;
margin-bottom: 0.5rem;
}
.sub-header {
font-size: 1.5rem;
color: #5c5c5c;
margin-bottom: 1.5rem;
}
.metric-card {
background-color: #f8f9fa;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.metric-label {
font-size: 1rem;
color: #5c5c5c;
}
.metric-value {
font-size: 1.8rem;
color: #0066cc;
font-weight: bold;
}
.good-metric {
color: #28a745;
}
.warning-metric {
color: #ffc107;
}
.danger-metric {
color: #dc3545;
}
.advisor-card {
background-color: #f0f7ff;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin-bottom: 20px;
}
.advice-text {
font-size: 1.1rem;
line-height: 1.6;
color: #333;
}
.insight-card {
background-color: #f0f8ff;
border-left: 4px solid #0066cc;
padding: 15px;
margin-bottom: 15px;
border-radius: 4px;
}
.ai-badge {
background-color: #0066cc;
color: white;
padding: 3px 10px;
border-radius: 10px;
font-size: 0.8rem;
margin-bottom: 10px;
display: inline-block;
}
.booking-card {
background-color: white;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
margin-bottom: 20px;
}
.session-type {
font-size: 1.2rem;
font-weight: bold;
color: #0066cc;
}
.session-duration {
color: #5c5c5c;
font-size: 0.9rem;
}
.session-price {
font-size: 1.1rem;
font-weight: bold;
color: #28a745;
}
</style>
""", unsafe_allow_html=True)
# Constants
DEFAULT_GROWTH_RATE = 0.08 # 8% monthly growth
DEFAULT_BURN_RATE = 85000 # $85,000 monthly burn
ENGINEER_SALARY = 10000 # $10,000 monthly cost per engineer ($120K/year)
DEFAULT_MARKETING_BUDGET = 10000 # $10,000 monthly marketing budget
# Initialize session state variables
if 'booked_sessions' not in st.session_state:
st.session_state.booked_sessions = []
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'audio_response' not in st.session_state:
st.session_state.audio_response = None
if 'insights_cache' not in st.session_state:
st.session_state.insights_cache = {}
if 'gemini_model' not in st.session_state:
st.session_state.gemini_model = None
# Sample data
@st.cache_data
def load_sample_data():
# TechHealth AI data
startup_data = {
"name": "TechHealth AI",
"stage": "Seed",
"founded": "18 months ago",
"employees": 12,
"last_funding": "$1.2M seed round 10 months ago",
"cash": 320000,
"burn_rate": 85000,
"revenue": 15000,
"growth_rate": 0.08
}
# Cash flow history
cash_flow_data = {
"Month": [f"Month {i}" for i in range(1, 11)],
"Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800],
"Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000],
"Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000],
"Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000],
"Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200],
"Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000],
"Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200],
"Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800]
}
# Add calculated fields
df = pd.DataFrame(cash_flow_data)
df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"]
# Transaction data
transactions = pd.DataFrame([
{"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"},
{"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"},
{"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"},
{"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"},
{"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"},
{"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"},
{"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
{"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"},
{"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"},
{"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"},
{"Date": "2024-01-05", "Category": "Travel", "Vendor": "Delta Airlines", "Amount": 1200, "Description": "Client Meeting Travel", "Flag": "Normal"},
{"Date": "2024-01-10", "Category": "Marketing", "Vendor": "Facebook Ads", "Amount": 4500, "Description": "Social Media Campaign", "Flag": "Normal"},
{"Date": "2024-01-15", "Category": "Software", "Vendor": "Atlassian", "Amount": 2800, "Description": "Development Tools", "Flag": "Normal"},
{"Date": "2024-01-20", "Category": "Payroll", "Vendor": "January Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
{"Date": "2024-01-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"}
])
return startup_data, df, transactions
# Setup AI Services
def setup_genai():
"""Initialize and configure Google's Generative AI and list available models"""
try:
if 'GOOGLE_API_KEY' in st.secrets:
genai.configure(api_key=st.secrets['GOOGLE_API_KEY'])
# Get available models and select one for text generation
models = genai.list_models()
text_models = [m.name for m in models if 'generateContent' in m.supported_generation_methods]
if text_models:
# Use first available text generation model
model_name = text_models[0]
st.session_state.gemini_model = model_name
return True
else:
st.warning("No appropriate generative AI models available")
# Use a fallback model name for demonstration
st.session_state.gemini_model = "gemini-1.5-pro"
return False
else:
st.warning("Google API key not found in secrets. Using simulated AI responses.")
st.session_state.gemini_model = "gemini-1.5-pro"
return False
except Exception as e:
st.warning(f"Failed to initialize Gemini: {e}. Using simulated AI responses.")
st.session_state.gemini_model = "gemini-1.5-pro"
return False
def generate_ai_response(prompt, simulate=False):
"""Generate response from Gemini or simulate one if the API is unavailable"""
if simulate:
# Simulate AI response with predefined text based on keywords in prompt
time.sleep(1) # Simulate processing time
if "runway" in prompt.lower():
return "Based on your current spend rate of $85K/month and revenue growth of 8%, your runway is approximately 3.8 months. I recommend reducing non-essential expenses to extend runway to at least 6 months before your next fundraising round."
elif "hire" in prompt.lower() or "hiring" in prompt.lower():
return "Adding new hires at this stage would reduce your runway significantly. Consider contracting talent first or postponing hiring until after securing additional funding. Each new engineer costs $10K/month, reducing runway by approximately 3 weeks per hire."
elif "marketing" in prompt.lower():
return "Your current CAC to LTV ratio doesn't justify increasing marketing spend. Focus on optimizing current channels and improving conversion rates. Once unit economics improve, gradually increase marketing budget by no more than 20% per month."
elif "fundraising" in prompt.lower() or "investor" in prompt.lower():
return "With less than 4 months of runway, you should begin fundraising preparations immediately. Focus on demonstrating product-market fit and improving key metrics like MRR growth, user retention, and unit economics before approaching investors."
elif "suspicious" in prompt.lower() or "transaction" in prompt.lower():
return "I've identified several concerning transactions including a $8,500 travel expense and $12,000 in office upgrades. These discretionary expenses represent over 25% of a month's burn and should be reviewed with your finance team immediately."
else:
return "Based on your financial data, I recommend prioritizing runway extension and focusing on core metrics that demonstrate product-market fit. Consider reducing non-essential expenses by 15-20% to add 1-2 months to your runway before beginning fundraising conversations."
else:
try:
# Use the actual Gemini model
model = genai.GenerativeModel(st.session_state.gemini_model)
generation_config = {
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 1024,
}
safety_settings = {
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE
}
response = model.generate_content(
prompt,
generation_config=generation_config,
safety_settings=safety_settings
)
return response.text
except Exception as e:
st.warning(f"Error generating AI response: {e}")
# Fall back to simulated response
return generate_ai_response(prompt, simulate=True)
# Financial modeling functions
def calculate_runway(initial_cash, monthly_burn, monthly_revenue, growth_rate, months=24):
"""Calculate runway based on current burn rate and revenue growth."""
dates = [datetime.now() + timedelta(days=30*i) for i in range(months)]
df = pd.DataFrame(index=dates, columns=['Cash', 'Revenue', 'Expenses', 'Net_Burn', 'Cumulative_Cash'])
current_cash = initial_cash
current_revenue = monthly_revenue
df.iloc[0, df.columns.get_loc('Cash')] = current_cash
df.iloc[0, df.columns.get_loc('Revenue')] = current_revenue
df.iloc[0, df.columns.get_loc('Expenses')] = monthly_burn
df.iloc[0, df.columns.get_loc('Net_Burn')] = monthly_burn - current_revenue
df.iloc[0, df.columns.get_loc('Cumulative_Cash')] = current_cash
runway_months = months
for i in range(1, months):
current_revenue = current_revenue * (1 + growth_rate)
net_burn = monthly_burn - current_revenue
current_cash = current_cash - net_burn
df.iloc[i, df.columns.get_loc('Cash')] = current_cash
df.iloc[i, df.columns.get_loc('Revenue')] = current_revenue
df.iloc[i, df.columns.get_loc('Expenses')] = monthly_burn
df.iloc[i, df.columns.get_loc('Net_Burn')] = net_burn
df.iloc[i, df.columns.get_loc('Cumulative_Cash')] = current_cash
if current_cash <= 0:
runway_months = i
break
return runway_months, df
def simulate_decision(initial_cash, monthly_burn, monthly_revenue, growth_rate,
new_expenses=0, new_hires=0, new_marketing=0, growth_impact=0):
"""Simulate the impact of a business decision on runway."""
# Calculate current runway
current_runway, current_df = calculate_runway(initial_cash, monthly_burn, monthly_revenue, growth_rate)
# Calculate additional expenses
additional_expenses = new_expenses + (new_hires * ENGINEER_SALARY) + new_marketing
# Calculate new runway
new_runway, new_df = calculate_runway(
initial_cash,
monthly_burn + additional_expenses,
monthly_revenue,
growth_rate + growth_impact
)
return current_runway, new_runway, current_df, new_df
def detect_suspicious_transactions(transactions_df):
"""AI-enhanced suspicious transaction detection."""
df = transactions_df.copy()
# Define thresholds for each category
category_thresholds = {
"Travel": 3000,
"Marketing": 10000,
"Office": 7000,
"Software": 6000,
"Consulting": 5000,
"Legal": 6000
}
# Define suspicious terms
suspicious_terms = ['luxury', 'cruise', 'premium', 'personal', 'gift']
# Add suspicious column
df['Suspicious'] = False
df['Reason'] = ""
df['Risk_Score'] = 0
# Check for suspicious patterns
for idx, row in df.iterrows():
reasons = []
risk_score = 0
# Check if amount exceeds category threshold
if row['Category'] in category_thresholds:
if row['Amount'] > category_thresholds[row['Category']]:
reasons.append(f"Amount exceeds typical spending for {row['Category']}")
risk_score += 30
# Higher risk for significantly exceeding threshold
excess_percentage = (row['Amount'] - category_thresholds[row['Category']]) / category_thresholds[row['Category']] * 100
if excess_percentage > 100: # More than double the threshold
risk_score += 20
# Check for suspicious vendors or descriptions
if any(term in str(row['Vendor']).lower() for term in suspicious_terms):
reasons.append(f"Vendor name contains suspicious term")
risk_score += 25
if any(term in str(row['Description']).lower() for term in suspicious_terms):
reasons.append(f"Description contains suspicious term")
risk_score += 20
# Check for rounded amounts (potential indicator of estimation/fabrication)
if row['Amount'] % 1000 == 0 and row['Amount'] > 3000:
reasons.append(f"Suspiciously round amount")
risk_score += 15
# Mark as suspicious if risk score is high enough
if risk_score >= 30:
df.at[idx, 'Suspicious'] = True
df.at[idx, 'Reason'] = "; ".join(reasons)
df.at[idx, 'Risk_Score'] = risk_score
# Sort by risk score
df = df.sort_values(by='Risk_Score', ascending=False)
return df
# Import page functions
from dashboard_page import render_financial_dashboard, get_runway_analysis, get_fundraising_readiness_analysis
from decision_simulator import render_decision_simulator, get_decision_analysis
from fund_monitoring import render_fund_monitoring, get_fraud_analysis
from financial_advisor import render_ai_financial_advisor, get_advisory_guidance, generate_voice_response
from book_session import render_book_session
# UI Components
def create_sidebar():
"""Create sidebar with company profile and filters."""
st.sidebar.title("StartupFinancePilot")
st.sidebar.image("https://img.freepik.com/premium-vector/business-finance-analytics-logo-design-vector-template_67715-552.jpg", width=150)
# Company profile
startup_data, _, _ = load_sample_data()
st.sidebar.header("Company Profile")
st.sidebar.write(f"**{startup_data['name']}**")
st.sidebar.write(f"Stage: {startup_data['stage']}")
st.sidebar.write(f"Founded: {startup_data['founded']}")
st.sidebar.write(f"Employees: {startup_data['employees']}")
st.sidebar.write(f"Last Funding: {startup_data['last_funding']}")
# AI Status
has_api = setup_genai()
ai_status = "🟢 Connected" if has_api else "🟡 Demo Mode"
st.sidebar.write(f"AI Status: {ai_status}")
if not has_api:
st.sidebar.info("Running in demo mode with simulated AI responses. Add GOOGLE_API_KEY to secrets for full functionality.")
# App navigation
st.sidebar.header("Navigation")
page = st.sidebar.radio("Go to", [
"Financial Dashboard",
"Decision Simulator",
"Fund Monitoring",
"AI Financial Advisor",
"Book a Session"
])
return page
# Main application
def main():
# Load sample data
startup_data, cash_flow_df, transactions_df = load_sample_data()
# Create sidebar and get selected page
page = create_sidebar()
# Render selected page
if page == "Financial Dashboard":
render_financial_dashboard(startup_data, cash_flow_df)
elif page == "Decision Simulator":
render_decision_simulator(startup_data)
elif page == "Fund Monitoring":
render_fund_monitoring(transactions_df)
elif page == "AI Financial Advisor":
render_ai_financial_advisor(startup_data)
elif page == "Book a Session":
render_book_session()
if __name__ == "__main__":
main()
|