File size: 15,838 Bytes
5b593c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
def render_financial_dashboard(startup_data, cash_flow_df):
"""
Render the AI-powered financial dashboard page.
This dashboard uses AI to analyze financial data and provide actionable insights
to startup founders, helping them make better decisions about their runway,
spending, and financial health.
"""
st.markdown("<h1 class='main-header'>Financial Dashboard</h1>", unsafe_allow_html=True)
st.markdown("<p class='sub-header'>AI-powered financial insights at a glance</p>", unsafe_allow_html=True)
# How AI helps with financial dashboards
with st.expander("βΉοΈ How AI enhances your financial dashboard"):
st.markdown("""
### How AI Powers Your Financial Dashboard
The financial dashboard uses AI to transform raw financial data into actionable intelligence:
- **Automated Analysis**: Instead of manually calculating runway and burn rates, our AI model analyzes your data and highlights critical trends
- **Predictive Forecasting**: AI forecasts your runway using pattern recognition and predictive analytics to account for varying growth rates
- **Anomaly Detection**: The system identifies unusual spending patterns or concerning financial trends that human analysis might miss
- **Strategic Recommendations**: Based on your specific financial situation, the AI provides tailored recommendations to optimize your runway
- **Benchmark Comparison**: Your metrics are automatically compared against industry standards for startups at your funding stage
This helps founders save time, catch financial issues early, and make data-driven decisions without needing financial expertise.
""")
# AI Insights Summary
insights_key = f"dashboard_{date.today().isoformat()}"
if insights_key not in st.session_state.insights_cache:
insights = generate_ai_response(f"""
You are a financial advisor for startups. Based on this startup's data:
- Current cash: ${startup_data['cash']}
- Monthly burn rate: ${startup_data['burn_rate']}
- Monthly revenue: ${startup_data['revenue']}
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
Provide the top 3 most important financial insights that the founder should know today.
Format each insight as a brief, action-oriented bullet point.
""", simulate=True)
st.session_state.insights_cache[insights_key] = insights
with st.expander("π AI Financial Insights", expanded=True):
st.markdown("<span class='ai-badge'>AI-Generated Insights</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[insights_key])
# Key metrics
col1, col2, col3, col4 = st.columns(4)
# Calculate runway
runway_months, runway_df = calculate_runway(
startup_data['cash'],
startup_data['burn_rate'],
startup_data['revenue'],
startup_data['growth_rate']
)
# Determine status colors based on financial health indicators
runway_status = "danger-metric" if runway_months < 6 else ("warning-metric" if runway_months < 9 else "good-metric")
burn_status = "danger-metric" if startup_data['burn_rate'] > 100000 else ("warning-metric" if startup_data['burn_rate'] > 80000 else "good-metric")
revenue_status = "good-metric" if startup_data['revenue'] > 20000 else ("warning-metric" if startup_data['revenue'] > 10000 else "danger-metric")
with col1:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Current Cash</p>
<p class='metric-value'>${startup_data['cash']:,}</p>
</div>
""", unsafe_allow_html=True)
with col2:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Monthly Burn</p>
<p class='metric-value {burn_status}'>${startup_data['burn_rate']:,}</p>
</div>
""", unsafe_allow_html=True)
with col3:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Monthly Revenue</p>
<p class='metric-value {revenue_status}'>${startup_data['revenue']:,}</p>
</div>
""", unsafe_allow_html=True)
with col4:
st.markdown(f"""
<div class='metric-card'>
<p class='metric-label'>Runway</p>
<p class='metric-value {runway_status}'>{runway_months} months</p>
</div>
""", unsafe_allow_html=True)
# Financial charts
st.subheader("Financial Overview")
tab1, tab2, tab3 = st.tabs(["Runway Projection", "Revenue vs. Expenses", "Burn Rate Trend"])
with tab1:
# Runway projection chart
fig = px.line(runway_df.reset_index(), x='index', y='Cumulative_Cash',
title="Cash Runway Projection",
labels={'index': 'Date', 'Cumulative_Cash': 'Remaining Cash ($)'},
color_discrete_sequence=['#0066cc'])
fig.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Out of Cash")
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Date",
yaxis_title="Cash Balance ($)",
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
st.plotly_chart(fig, use_container_width=True)
# Get analysis from Gemini
with st.expander("π AI Financial Analysis", expanded=True):
# Use cache to avoid repeated API calls
analysis_key = f"runway_{date.today().isoformat()}"
if analysis_key not in st.session_state.insights_cache:
analysis = get_runway_analysis(startup_data)
st.session_state.insights_cache[analysis_key] = analysis
st.markdown("<span class='ai-badge'>AI Financial Analysis</span>", unsafe_allow_html=True)
st.markdown(st.session_state.insights_cache[analysis_key])
with tab2:
# Revenue vs Expenses chart
rev_exp_df = cash_flow_df.copy()
fig = px.bar(rev_exp_df, x='Month', y=['Revenue', 'Total_Expenses'],
title="Revenue vs. Expenses",
barmode='group',
labels={'value': 'Amount ($)', 'variable': 'Category'},
color_discrete_sequence=['#28a745', '#dc3545'])
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Month",
yaxis_title="Amount ($)",
font=dict(family="Arial, sans-serif", size=12),
legend_title="",
margin=dict(l=20, r=20, t=40, b=20),
)
st.plotly_chart(fig, use_container_width=True)
# Calculate revenue growth
revenue_growth = [(cash_flow_df['Revenue'].iloc[i] / cash_flow_df['Revenue'].iloc[i-1] - 1) * 100 if i > 0 else 0
for i in range(len(cash_flow_df))]
avg_growth = sum(revenue_growth[1:]) / len(revenue_growth[1:])
col1, col2 = st.columns(2)
with col1:
st.metric("Average Monthly Revenue Growth", f"{avg_growth:.1f}%")
with col2:
expense_growth = (cash_flow_df['Total_Expenses'].iloc[-1] / cash_flow_df['Total_Expenses'].iloc[0] - 1) * 100
st.metric("Total Expense Growth", f"{expense_growth:.1f}%", delta=f"{expense_growth - avg_growth:.1f}%", delta_color="inverse")
with tab3:
# Burn rate trend
fig = px.line(cash_flow_df, x='Month', y='Net_Burn',
title="Monthly Net Burn Trend",
labels={'Net_Burn': 'Net Burn ($)'},
color_discrete_sequence=['#dc3545'])
fig.update_layout(
height=400,
plot_bgcolor='rgba(240,247,255,0.8)',
xaxis_title="Month",
yaxis_title="Net Burn ($)",
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
# Add efficiency ratio as a second y-axis
efficiency_ratio = [cash_flow_df['Revenue'].iloc[i] / cash_flow_df['Total_Expenses'].iloc[i] * 100
for i in range(len(cash_flow_df))]
fig.add_trace(go.Scatter(
x=cash_flow_df['Month'],
y=efficiency_ratio,
name='Efficiency Ratio (%)',
yaxis='y2',
line=dict(color='#0066cc', width=2, dash='dot')
))
fig.update_layout(
yaxis2=dict(
title='Efficiency Ratio (%)',
overlaying='y',
side='right',
range=[0, max(efficiency_ratio) * 1.2]
)
)
st.plotly_chart(fig, use_container_width=True)
with st.expander("π Understanding Efficiency Ratio"):
st.info("The efficiency ratio measures how efficiently your startup is generating revenue relative to expenses. A higher percentage means you're getting more revenue per dollar spent. Venture-backed startups typically aim for at least 40% before Series B funding.")
# Expense breakdown
st.subheader("Expense Breakdown")
# Last month expenses
last_month = cash_flow_df.iloc[-1]
expense_categories = ['Payroll', 'Marketing', 'Office', 'Software', 'Travel', 'Legal', 'Misc']
expense_values = [last_month[cat] for cat in expense_categories]
col1, col2 = st.columns([2, 1])
with col1:
fig = px.pie(values=expense_values, names=expense_categories,
title="Current Month Expense Breakdown",
color_discrete_sequence=px.colors.sequential.Blues_r)
fig.update_layout(
height=400,
font=dict(family="Arial, sans-serif", size=12),
margin=dict(l=20, r=20, t=40, b=20),
)
fig.update_traces(textposition='inside', textinfo='percent+label')
st.plotly_chart(fig, use_container_width=True)
with col2:
# Expense analysis
st.markdown("<h4>Expense Analysis</h4>", unsafe_allow_html=True)
# Calculate industry benchmarks (simulated)
benchmarks = {
"Payroll": "70-80%",
"Marketing": "10-15%",
"Office": "5-8%",
"Software": "3-5%"
}
# Create a table with expense categories, amounts, and % of total
expense_df = pd.DataFrame({
"Category": expense_categories,
"Amount": expense_values,
"% of Total": [v / sum(expense_values) * 100 for v in expense_values]
})
# Add benchmark column
expense_df["Industry Benchmark"] = expense_df["Category"].map(
lambda x: benchmarks.get(x, "N/A")
)
# Format the dataframe for display
formatted_df = expense_df.copy()
formatted_df["Amount"] = formatted_df["Amount"].apply(lambda x: f"${x:,.0f}")
formatted_df["% of Total"] = formatted_df["% of Total"].apply(lambda x: f"{x:.1f}%")
st.table(formatted_df)
# AI-powered spending optimization
with st.expander("π‘ AI Spending Optimization"):
st.markdown("<span class='ai-badge'>AI Recommendation</span>", unsafe_allow_html=True)
# Use cache to avoid repeated API calls
spending_key = f"spending_{date.today().isoformat()}"
if spending_key not in st.session_state.insights_cache:
spending_recommendation = generate_ai_response("""
Based on your expense breakdown, recommend 2-3 specific ways to optimize spending to extend runway.
Focus on industry best practices for seed-stage startups.
""", simulate=True)
st.session_state.insights_cache[spending_key] = spending_recommendation
st.markdown(st.session_state.insights_cache[spending_key])
# Fundraising Readiness Assessment
st.subheader("Fundraising Readiness")
# Get AI analysis of fundraising readiness
fundraising_key = f"fundraising_{date.today().isoformat()}"
if fundraising_key not in st.session_state.insights_cache:
fundraising_analysis = get_fundraising_readiness_analysis(startup_data, cash_flow_df)
st.session_state.insights_cache[fundraising_key] = fundraising_analysis
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
st.markdown("<span class='ai-badge'>AI Fundraising Assessment</span>", unsafe_allow_html=True)
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[fundraising_key]}</p>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Call-to-action for advisor
st.info("π
Need personalized guidance on fundraising? [Book a session](#book-a-session) with our AI financial advisor.")
def get_runway_analysis(financial_data):
"""Get runway analysis using Gemini."""
prompt = f"""
You are a financial advisor for startups. Analyze this startup's financial data:
- Current cash: ${financial_data['cash']}
- Monthly burn rate: ${financial_data['burn_rate']}
- Monthly revenue: ${financial_data['revenue']}
- Monthly growth rate: {financial_data['growth_rate'] * 100}%
Provide a detailed analysis of their runway and financial health. Include:
1. Exact runway calculation in months
2. Assessment of financial health (critical, concerning, stable, or healthy)
3. Benchmarks compared to similar seed-stage startups
4. Three specific, actionable recommendations to improve runway
5. Key metrics they should focus on
Format your response in a structured, easy-to-read format with clear sections and bullet points.
"""
return generate_ai_response(prompt)
def get_fundraising_readiness_analysis(startup_data, cash_flow_df):
"""Get AI analysis of fundraising readiness."""
metrics = {
"MRR Growth": f"{(cash_flow_df['Revenue'].iloc[-1] / cash_flow_df['Revenue'].iloc[-2] - 1) * 100:.1f}%",
"Gross Margin": f"{(cash_flow_df['Revenue'].iloc[-1] - cash_flow_df['Total_Expenses'].iloc[-1] / 2) / cash_flow_df['Revenue'].iloc[-1] * 100:.1f}%",
"CAC": "$950", # Example value
"LTV": "$4,500", # Example value
"Churn": "3.2%", # Example value
}
metrics_text = "\n".join([f"- {k}: {v}" for k, v in metrics.items()])
prompt = f"""
You are a startup fundraising advisor. Analyze this startup's readiness for their next funding round:
Company Profile:
- Stage: {startup_data['stage']}
- Last Funding: {startup_data['last_funding']}
- Current Cash: ${startup_data['cash']}
- Monthly Burn: ${startup_data['burn_rate']}
- Runway: {startup_data['cash'] / (startup_data['burn_rate'] - startup_data['revenue']):.1f} months
Key Metrics:
{metrics_text}
Provide a comprehensive fundraising readiness assessment:
1. Overall fundraising readiness score (0-10)
2. Assessment of current metrics compared to investor expectations for next round
3. Identify the 3 most critical metrics to improve before fundraising
4. Recommend specific targets for each key metric
5. Suggest timeline and specific milestones for fundraising preparation
6. Estimate reasonable valuation range based on metrics and market conditions
Be specific with numbers, timelines, and actionable targets.
"""
return generate_ai_response(prompt)
|