|
import pandas as pd |
|
import os |
|
|
|
|
|
os.makedirs('data', exist_ok=True) |
|
|
|
|
|
company_data = { |
|
"name": "TechHealth AI", |
|
"stage": "Seed", |
|
"founded": "18 months ago", |
|
"employees": 12, |
|
"last_funding": "$1.2M seed round 10 months ago", |
|
"cash": 320000, |
|
"burn_rate": 85000, |
|
"revenue": 15000, |
|
"growth_rate": 0.08 |
|
} |
|
|
|
|
|
pd.DataFrame([company_data]).to_csv('data/startup_data.csv', index=False) |
|
|
|
|
|
cash_flow_data = { |
|
"Month": [f"Month {i}" for i in range(1, 11)], |
|
"Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800], |
|
"Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000], |
|
"Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000], |
|
"Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000], |
|
"Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200], |
|
"Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000], |
|
"Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200], |
|
"Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800] |
|
} |
|
|
|
|
|
df = pd.DataFrame(cash_flow_data) |
|
df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1) |
|
df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"] |
|
|
|
|
|
df.to_csv('data/projections.csv', index=False) |
|
|
|
|
|
transactions = pd.DataFrame([ |
|
{"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"}, |
|
{"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"}, |
|
{"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"}, |
|
{"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"}, |
|
{"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"}, |
|
{"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"}, |
|
{"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"}, |
|
{"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"}, |
|
{"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"}, |
|
{"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"}, |
|
{"Date": "2024-01-05", "Category": "Travel", "Vendor": "Delta Airlines", "Amount": 1200, "Description": "Client Meeting Travel", "Flag": "Normal"}, |
|
{"Date": "2024-01-10", "Category": "Marketing", "Vendor": "Facebook Ads", "Amount": 4500, "Description": "Social Media Campaign", "Flag": "Normal"}, |
|
{"Date": "2024-01-15", "Category": "Software", "Vendor": "Atlassian", "Amount": 2800, "Description": "Development Tools", "Flag": "Normal"}, |
|
{"Date": "2024-01-20", "Category": "Payroll", "Vendor": "January Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"}, |
|
{"Date": "2024-01-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"} |
|
]) |
|
|
|
|
|
transactions.to_csv('data/transactions.csv', index=False) |
|
|
|
|
|
suspicious = transactions[transactions['Flag'] == 'Suspicious'] |
|
suspicious.to_csv('data/suspicious.csv', index=False) |
|
|
|
print("Sample data files have been created in the 'data' directory.") |
|
|