Delete dashboard-page.py
Browse files- dashboard-page.py +0 -342
dashboard-page.py
DELETED
@@ -1,342 +0,0 @@
|
|
1 |
-
def render_financial_dashboard(startup_data, cash_flow_df):
|
2 |
-
"""
|
3 |
-
Render the AI-powered financial dashboard page.
|
4 |
-
|
5 |
-
This dashboard uses AI to analyze financial data and provide actionable insights
|
6 |
-
to startup founders, helping them make better decisions about their runway,
|
7 |
-
spending, and financial health.
|
8 |
-
"""
|
9 |
-
st.markdown("<h1 class='main-header'>Financial Dashboard</h1>", unsafe_allow_html=True)
|
10 |
-
st.markdown("<p class='sub-header'>AI-powered financial insights at a glance</p>", unsafe_allow_html=True)
|
11 |
-
|
12 |
-
# How AI helps with financial dashboards
|
13 |
-
with st.expander("ℹ️ How AI enhances your financial dashboard"):
|
14 |
-
st.markdown("""
|
15 |
-
### How AI Powers Your Financial Dashboard
|
16 |
-
|
17 |
-
The financial dashboard uses AI to transform raw financial data into actionable intelligence:
|
18 |
-
|
19 |
-
- **Automated Analysis**: Instead of manually calculating runway and burn rates, our AI model analyzes your data and highlights critical trends
|
20 |
-
- **Predictive Forecasting**: AI forecasts your runway using pattern recognition and predictive analytics to account for varying growth rates
|
21 |
-
- **Anomaly Detection**: The system identifies unusual spending patterns or concerning financial trends that human analysis might miss
|
22 |
-
- **Strategic Recommendations**: Based on your specific financial situation, the AI provides tailored recommendations to optimize your runway
|
23 |
-
- **Benchmark Comparison**: Your metrics are automatically compared against industry standards for startups at your funding stage
|
24 |
-
|
25 |
-
This helps founders save time, catch financial issues early, and make data-driven decisions without needing financial expertise.
|
26 |
-
""")
|
27 |
-
|
28 |
-
# AI Insights Summary
|
29 |
-
insights_key = f"dashboard_{date.today().isoformat()}"
|
30 |
-
if insights_key not in st.session_state.insights_cache:
|
31 |
-
insights = generate_ai_response(f"""
|
32 |
-
You are a financial advisor for startups. Based on this startup's data:
|
33 |
-
- Current cash: ${startup_data['cash']}
|
34 |
-
- Monthly burn rate: ${startup_data['burn_rate']}
|
35 |
-
- Monthly revenue: ${startup_data['revenue']}
|
36 |
-
- Monthly growth rate: {startup_data['growth_rate'] * 100}%
|
37 |
-
|
38 |
-
Provide the top 3 most important financial insights that the founder should know today.
|
39 |
-
Format each insight as a brief, action-oriented bullet point.
|
40 |
-
""", simulate=True)
|
41 |
-
st.session_state.insights_cache[insights_key] = insights
|
42 |
-
|
43 |
-
with st.expander("📊 AI Financial Insights", expanded=True):
|
44 |
-
st.markdown("<span class='ai-badge'>AI-Generated Insights</span>", unsafe_allow_html=True)
|
45 |
-
st.markdown(st.session_state.insights_cache[insights_key])
|
46 |
-
|
47 |
-
# Key metrics
|
48 |
-
col1, col2, col3, col4 = st.columns(4)
|
49 |
-
|
50 |
-
# Calculate runway
|
51 |
-
runway_months, runway_df = calculate_runway(
|
52 |
-
startup_data['cash'],
|
53 |
-
startup_data['burn_rate'],
|
54 |
-
startup_data['revenue'],
|
55 |
-
startup_data['growth_rate']
|
56 |
-
)
|
57 |
-
|
58 |
-
# Determine status colors based on financial health indicators
|
59 |
-
runway_status = "danger-metric" if runway_months < 6 else ("warning-metric" if runway_months < 9 else "good-metric")
|
60 |
-
burn_status = "danger-metric" if startup_data['burn_rate'] > 100000 else ("warning-metric" if startup_data['burn_rate'] > 80000 else "good-metric")
|
61 |
-
revenue_status = "good-metric" if startup_data['revenue'] > 20000 else ("warning-metric" if startup_data['revenue'] > 10000 else "danger-metric")
|
62 |
-
|
63 |
-
with col1:
|
64 |
-
st.markdown(f"""
|
65 |
-
<div class='metric-card'>
|
66 |
-
<p class='metric-label'>Current Cash</p>
|
67 |
-
<p class='metric-value'>${startup_data['cash']:,}</p>
|
68 |
-
</div>
|
69 |
-
""", unsafe_allow_html=True)
|
70 |
-
|
71 |
-
with col2:
|
72 |
-
st.markdown(f"""
|
73 |
-
<div class='metric-card'>
|
74 |
-
<p class='metric-label'>Monthly Burn</p>
|
75 |
-
<p class='metric-value {burn_status}'>${startup_data['burn_rate']:,}</p>
|
76 |
-
</div>
|
77 |
-
""", unsafe_allow_html=True)
|
78 |
-
|
79 |
-
with col3:
|
80 |
-
st.markdown(f"""
|
81 |
-
<div class='metric-card'>
|
82 |
-
<p class='metric-label'>Monthly Revenue</p>
|
83 |
-
<p class='metric-value {revenue_status}'>${startup_data['revenue']:,}</p>
|
84 |
-
</div>
|
85 |
-
""", unsafe_allow_html=True)
|
86 |
-
|
87 |
-
with col4:
|
88 |
-
st.markdown(f"""
|
89 |
-
<div class='metric-card'>
|
90 |
-
<p class='metric-label'>Runway</p>
|
91 |
-
<p class='metric-value {runway_status}'>{runway_months} months</p>
|
92 |
-
</div>
|
93 |
-
""", unsafe_allow_html=True)
|
94 |
-
|
95 |
-
# Financial charts
|
96 |
-
st.subheader("Financial Overview")
|
97 |
-
|
98 |
-
tab1, tab2, tab3 = st.tabs(["Runway Projection", "Revenue vs. Expenses", "Burn Rate Trend"])
|
99 |
-
|
100 |
-
with tab1:
|
101 |
-
# Runway projection chart
|
102 |
-
fig = px.line(runway_df.reset_index(), x='index', y='Cumulative_Cash',
|
103 |
-
title="Cash Runway Projection",
|
104 |
-
labels={'index': 'Date', 'Cumulative_Cash': 'Remaining Cash ($)'},
|
105 |
-
color_discrete_sequence=['#0066cc'])
|
106 |
-
fig.add_hline(y=0, line_dash="dash", line_color="red", annotation_text="Out of Cash")
|
107 |
-
fig.update_layout(
|
108 |
-
height=400,
|
109 |
-
plot_bgcolor='rgba(240,247,255,0.8)',
|
110 |
-
xaxis_title="Date",
|
111 |
-
yaxis_title="Cash Balance ($)",
|
112 |
-
font=dict(family="Arial, sans-serif", size=12),
|
113 |
-
margin=dict(l=20, r=20, t=40, b=20),
|
114 |
-
)
|
115 |
-
st.plotly_chart(fig, use_container_width=True)
|
116 |
-
|
117 |
-
# Get analysis from Gemini
|
118 |
-
with st.expander("🔍 AI Financial Analysis", expanded=True):
|
119 |
-
# Use cache to avoid repeated API calls
|
120 |
-
analysis_key = f"runway_{date.today().isoformat()}"
|
121 |
-
if analysis_key not in st.session_state.insights_cache:
|
122 |
-
analysis = get_runway_analysis(startup_data)
|
123 |
-
st.session_state.insights_cache[analysis_key] = analysis
|
124 |
-
|
125 |
-
st.markdown("<span class='ai-badge'>AI Financial Analysis</span>", unsafe_allow_html=True)
|
126 |
-
st.markdown(st.session_state.insights_cache[analysis_key])
|
127 |
-
|
128 |
-
with tab2:
|
129 |
-
# Revenue vs Expenses chart
|
130 |
-
rev_exp_df = cash_flow_df.copy()
|
131 |
-
fig = px.bar(rev_exp_df, x='Month', y=['Revenue', 'Total_Expenses'],
|
132 |
-
title="Revenue vs. Expenses",
|
133 |
-
barmode='group',
|
134 |
-
labels={'value': 'Amount ($)', 'variable': 'Category'},
|
135 |
-
color_discrete_sequence=['#28a745', '#dc3545'])
|
136 |
-
fig.update_layout(
|
137 |
-
height=400,
|
138 |
-
plot_bgcolor='rgba(240,247,255,0.8)',
|
139 |
-
xaxis_title="Month",
|
140 |
-
yaxis_title="Amount ($)",
|
141 |
-
font=dict(family="Arial, sans-serif", size=12),
|
142 |
-
legend_title="",
|
143 |
-
margin=dict(l=20, r=20, t=40, b=20),
|
144 |
-
)
|
145 |
-
st.plotly_chart(fig, use_container_width=True)
|
146 |
-
|
147 |
-
# Calculate revenue growth
|
148 |
-
revenue_growth = [(cash_flow_df['Revenue'].iloc[i] / cash_flow_df['Revenue'].iloc[i-1] - 1) * 100 if i > 0 else 0
|
149 |
-
for i in range(len(cash_flow_df))]
|
150 |
-
avg_growth = sum(revenue_growth[1:]) / len(revenue_growth[1:])
|
151 |
-
|
152 |
-
col1, col2 = st.columns(2)
|
153 |
-
with col1:
|
154 |
-
st.metric("Average Monthly Revenue Growth", f"{avg_growth:.1f}%")
|
155 |
-
with col2:
|
156 |
-
expense_growth = (cash_flow_df['Total_Expenses'].iloc[-1] / cash_flow_df['Total_Expenses'].iloc[0] - 1) * 100
|
157 |
-
st.metric("Total Expense Growth", f"{expense_growth:.1f}%", delta=f"{expense_growth - avg_growth:.1f}%", delta_color="inverse")
|
158 |
-
|
159 |
-
with tab3:
|
160 |
-
# Burn rate trend
|
161 |
-
fig = px.line(cash_flow_df, x='Month', y='Net_Burn',
|
162 |
-
title="Monthly Net Burn Trend",
|
163 |
-
labels={'Net_Burn': 'Net Burn ($)'},
|
164 |
-
color_discrete_sequence=['#dc3545'])
|
165 |
-
fig.update_layout(
|
166 |
-
height=400,
|
167 |
-
plot_bgcolor='rgba(240,247,255,0.8)',
|
168 |
-
xaxis_title="Month",
|
169 |
-
yaxis_title="Net Burn ($)",
|
170 |
-
font=dict(family="Arial, sans-serif", size=12),
|
171 |
-
margin=dict(l=20, r=20, t=40, b=20),
|
172 |
-
)
|
173 |
-
|
174 |
-
# Add efficiency ratio as a second y-axis
|
175 |
-
efficiency_ratio = [cash_flow_df['Revenue'].iloc[i] / cash_flow_df['Total_Expenses'].iloc[i] * 100
|
176 |
-
for i in range(len(cash_flow_df))]
|
177 |
-
|
178 |
-
fig.add_trace(go.Scatter(
|
179 |
-
x=cash_flow_df['Month'],
|
180 |
-
y=efficiency_ratio,
|
181 |
-
name='Efficiency Ratio (%)',
|
182 |
-
yaxis='y2',
|
183 |
-
line=dict(color='#0066cc', width=2, dash='dot')
|
184 |
-
))
|
185 |
-
|
186 |
-
fig.update_layout(
|
187 |
-
yaxis2=dict(
|
188 |
-
title='Efficiency Ratio (%)',
|
189 |
-
overlaying='y',
|
190 |
-
side='right',
|
191 |
-
range=[0, max(efficiency_ratio) * 1.2]
|
192 |
-
)
|
193 |
-
)
|
194 |
-
|
195 |
-
st.plotly_chart(fig, use_container_width=True)
|
196 |
-
|
197 |
-
with st.expander("🔎 Understanding Efficiency Ratio"):
|
198 |
-
st.info("The efficiency ratio measures how efficiently your startup is generating revenue relative to expenses. A higher percentage means you're getting more revenue per dollar spent. Venture-backed startups typically aim for at least 40% before Series B funding.")
|
199 |
-
|
200 |
-
# Expense breakdown
|
201 |
-
st.subheader("Expense Breakdown")
|
202 |
-
|
203 |
-
# Last month expenses
|
204 |
-
last_month = cash_flow_df.iloc[-1]
|
205 |
-
expense_categories = ['Payroll', 'Marketing', 'Office', 'Software', 'Travel', 'Legal', 'Misc']
|
206 |
-
expense_values = [last_month[cat] for cat in expense_categories]
|
207 |
-
|
208 |
-
col1, col2 = st.columns([2, 1])
|
209 |
-
|
210 |
-
with col1:
|
211 |
-
fig = px.pie(values=expense_values, names=expense_categories,
|
212 |
-
title="Current Month Expense Breakdown",
|
213 |
-
color_discrete_sequence=px.colors.sequential.Blues_r)
|
214 |
-
fig.update_layout(
|
215 |
-
height=400,
|
216 |
-
font=dict(family="Arial, sans-serif", size=12),
|
217 |
-
margin=dict(l=20, r=20, t=40, b=20),
|
218 |
-
)
|
219 |
-
fig.update_traces(textposition='inside', textinfo='percent+label')
|
220 |
-
st.plotly_chart(fig, use_container_width=True)
|
221 |
-
|
222 |
-
with col2:
|
223 |
-
# Expense analysis
|
224 |
-
st.markdown("<h4>Expense Analysis</h4>", unsafe_allow_html=True)
|
225 |
-
|
226 |
-
# Calculate industry benchmarks (simulated)
|
227 |
-
benchmarks = {
|
228 |
-
"Payroll": "70-80%",
|
229 |
-
"Marketing": "10-15%",
|
230 |
-
"Office": "5-8%",
|
231 |
-
"Software": "3-5%"
|
232 |
-
}
|
233 |
-
|
234 |
-
# Create a table with expense categories, amounts, and % of total
|
235 |
-
expense_df = pd.DataFrame({
|
236 |
-
"Category": expense_categories,
|
237 |
-
"Amount": expense_values,
|
238 |
-
"% of Total": [v / sum(expense_values) * 100 for v in expense_values]
|
239 |
-
})
|
240 |
-
|
241 |
-
# Add benchmark column
|
242 |
-
expense_df["Industry Benchmark"] = expense_df["Category"].map(
|
243 |
-
lambda x: benchmarks.get(x, "N/A")
|
244 |
-
)
|
245 |
-
|
246 |
-
# Format the dataframe for display
|
247 |
-
formatted_df = expense_df.copy()
|
248 |
-
formatted_df["Amount"] = formatted_df["Amount"].apply(lambda x: f"${x:,.0f}")
|
249 |
-
formatted_df["% of Total"] = formatted_df["% of Total"].apply(lambda x: f"{x:.1f}%")
|
250 |
-
|
251 |
-
st.table(formatted_df)
|
252 |
-
|
253 |
-
# AI-powered spending optimization
|
254 |
-
with st.expander("💡 AI Spending Optimization"):
|
255 |
-
st.markdown("<span class='ai-badge'>AI Recommendation</span>", unsafe_allow_html=True)
|
256 |
-
|
257 |
-
# Use cache to avoid repeated API calls
|
258 |
-
spending_key = f"spending_{date.today().isoformat()}"
|
259 |
-
if spending_key not in st.session_state.insights_cache:
|
260 |
-
spending_recommendation = generate_ai_response("""
|
261 |
-
Based on your expense breakdown, recommend 2-3 specific ways to optimize spending to extend runway.
|
262 |
-
Focus on industry best practices for seed-stage startups.
|
263 |
-
""", simulate=True)
|
264 |
-
st.session_state.insights_cache[spending_key] = spending_recommendation
|
265 |
-
|
266 |
-
st.markdown(st.session_state.insights_cache[spending_key])
|
267 |
-
|
268 |
-
# Fundraising Readiness Assessment
|
269 |
-
st.subheader("Fundraising Readiness")
|
270 |
-
|
271 |
-
# Get AI analysis of fundraising readiness
|
272 |
-
fundraising_key = f"fundraising_{date.today().isoformat()}"
|
273 |
-
if fundraising_key not in st.session_state.insights_cache:
|
274 |
-
fundraising_analysis = get_fundraising_readiness_analysis(startup_data, cash_flow_df)
|
275 |
-
st.session_state.insights_cache[fundraising_key] = fundraising_analysis
|
276 |
-
|
277 |
-
st.markdown("<div class='advisor-card'>", unsafe_allow_html=True)
|
278 |
-
st.markdown("<span class='ai-badge'>AI Fundraising Assessment</span>", unsafe_allow_html=True)
|
279 |
-
st.markdown(f"<p class='advice-text'>{st.session_state.insights_cache[fundraising_key]}</p>", unsafe_allow_html=True)
|
280 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
281 |
-
|
282 |
-
# Call-to-action for advisor
|
283 |
-
st.info("📅 Need personalized guidance on fundraising? [Book a session](#book-a-session) with our AI financial advisor.")
|
284 |
-
|
285 |
-
def get_runway_analysis(financial_data):
|
286 |
-
"""Get runway analysis using Gemini."""
|
287 |
-
prompt = f"""
|
288 |
-
You are a financial advisor for startups. Analyze this startup's financial data:
|
289 |
-
- Current cash: ${financial_data['cash']}
|
290 |
-
- Monthly burn rate: ${financial_data['burn_rate']}
|
291 |
-
- Monthly revenue: ${financial_data['revenue']}
|
292 |
-
- Monthly growth rate: {financial_data['growth_rate'] * 100}%
|
293 |
-
|
294 |
-
Provide a detailed analysis of their runway and financial health. Include:
|
295 |
-
1. Exact runway calculation in months
|
296 |
-
2. Assessment of financial health (critical, concerning, stable, or healthy)
|
297 |
-
3. Benchmarks compared to similar seed-stage startups
|
298 |
-
4. Three specific, actionable recommendations to improve runway
|
299 |
-
5. Key metrics they should focus on
|
300 |
-
|
301 |
-
Format your response in a structured, easy-to-read format with clear sections and bullet points.
|
302 |
-
"""
|
303 |
-
|
304 |
-
return generate_ai_response(prompt)
|
305 |
-
|
306 |
-
def get_fundraising_readiness_analysis(startup_data, cash_flow_df):
|
307 |
-
"""Get AI analysis of fundraising readiness."""
|
308 |
-
metrics = {
|
309 |
-
"MRR Growth": f"{(cash_flow_df['Revenue'].iloc[-1] / cash_flow_df['Revenue'].iloc[-2] - 1) * 100:.1f}%",
|
310 |
-
"Gross Margin": f"{(cash_flow_df['Revenue'].iloc[-1] - cash_flow_df['Total_Expenses'].iloc[-1] / 2) / cash_flow_df['Revenue'].iloc[-1] * 100:.1f}%",
|
311 |
-
"CAC": "$950", # Example value
|
312 |
-
"LTV": "$4,500", # Example value
|
313 |
-
"Churn": "3.2%", # Example value
|
314 |
-
}
|
315 |
-
|
316 |
-
metrics_text = "\n".join([f"- {k}: {v}" for k, v in metrics.items()])
|
317 |
-
|
318 |
-
prompt = f"""
|
319 |
-
You are a startup fundraising advisor. Analyze this startup's readiness for their next funding round:
|
320 |
-
|
321 |
-
Company Profile:
|
322 |
-
- Stage: {startup_data['stage']}
|
323 |
-
- Last Funding: {startup_data['last_funding']}
|
324 |
-
- Current Cash: ${startup_data['cash']}
|
325 |
-
- Monthly Burn: ${startup_data['burn_rate']}
|
326 |
-
- Runway: {startup_data['cash'] / (startup_data['burn_rate'] - startup_data['revenue']):.1f} months
|
327 |
-
|
328 |
-
Key Metrics:
|
329 |
-
{metrics_text}
|
330 |
-
|
331 |
-
Provide a comprehensive fundraising readiness assessment:
|
332 |
-
1. Overall fundraising readiness score (0-10)
|
333 |
-
2. Assessment of current metrics compared to investor expectations for next round
|
334 |
-
3. Identify the 3 most critical metrics to improve before fundraising
|
335 |
-
4. Recommend specific targets for each key metric
|
336 |
-
5. Suggest timeline and specific milestones for fundraising preparation
|
337 |
-
6. Estimate reasonable valuation range based on metrics and market conditions
|
338 |
-
|
339 |
-
Be specific with numbers, timelines, and actionable targets.
|
340 |
-
"""
|
341 |
-
|
342 |
-
return generate_ai_response(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|