walaa2022 commited on
Commit
8085de9
·
verified ·
1 Parent(s): 9569deb

Delete sample-data.py

Browse files
Files changed (1) hide show
  1. sample-data.py +0 -70
sample-data.py DELETED
@@ -1,70 +0,0 @@
1
- import pandas as pd
2
- import os
3
-
4
- # Create data directory if it doesn't exist
5
- os.makedirs('data', exist_ok=True)
6
-
7
- # TechHealth AI data
8
- company_data = {
9
- "name": "TechHealth AI",
10
- "stage": "Seed",
11
- "founded": "18 months ago",
12
- "employees": 12,
13
- "last_funding": "$1.2M seed round 10 months ago",
14
- "cash": 320000,
15
- "burn_rate": 85000,
16
- "revenue": 15000,
17
- "growth_rate": 0.08
18
- }
19
-
20
- # Save company data
21
- pd.DataFrame([company_data]).to_csv('data/startup_data.csv', index=False)
22
-
23
- # Cash flow history
24
- cash_flow_data = {
25
- "Month": [f"Month {i}" for i in range(1, 11)],
26
- "Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800],
27
- "Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000],
28
- "Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000],
29
- "Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000],
30
- "Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200],
31
- "Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000],
32
- "Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200],
33
- "Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800]
34
- }
35
-
36
- # Add calculated fields
37
- df = pd.DataFrame(cash_flow_data)
38
- df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
39
- df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"]
40
-
41
- # Save cash flow data
42
- df.to_csv('data/projections.csv', index=False)
43
-
44
- # Transaction data
45
- transactions = pd.DataFrame([
46
- {"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"},
47
- {"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"},
48
- {"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"},
49
- {"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"},
50
- {"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"},
51
- {"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"},
52
- {"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
53
- {"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"},
54
- {"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"},
55
- {"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"},
56
- {"Date": "2024-01-05", "Category": "Travel", "Vendor": "Delta Airlines", "Amount": 1200, "Description": "Client Meeting Travel", "Flag": "Normal"},
57
- {"Date": "2024-01-10", "Category": "Marketing", "Vendor": "Facebook Ads", "Amount": 4500, "Description": "Social Media Campaign", "Flag": "Normal"},
58
- {"Date": "2024-01-15", "Category": "Software", "Vendor": "Atlassian", "Amount": 2800, "Description": "Development Tools", "Flag": "Normal"},
59
- {"Date": "2024-01-20", "Category": "Payroll", "Vendor": "January Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
60
- {"Date": "2024-01-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"}
61
- ])
62
-
63
- # Save transactions data
64
- transactions.to_csv('data/transactions.csv', index=False)
65
-
66
- # Create a separate file for suspicious transactions for easier analysis
67
- suspicious = transactions[transactions['Flag'] == 'Suspicious']
68
- suspicious.to_csv('data/suspicious.csv', index=False)
69
-
70
- print("Sample data files have been created in the 'data' directory.")