Delete sample-data.py
Browse files- sample-data.py +0 -70
sample-data.py
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import os
|
3 |
-
|
4 |
-
# Create data directory if it doesn't exist
|
5 |
-
os.makedirs('data', exist_ok=True)
|
6 |
-
|
7 |
-
# TechHealth AI data
|
8 |
-
company_data = {
|
9 |
-
"name": "TechHealth AI",
|
10 |
-
"stage": "Seed",
|
11 |
-
"founded": "18 months ago",
|
12 |
-
"employees": 12,
|
13 |
-
"last_funding": "$1.2M seed round 10 months ago",
|
14 |
-
"cash": 320000,
|
15 |
-
"burn_rate": 85000,
|
16 |
-
"revenue": 15000,
|
17 |
-
"growth_rate": 0.08
|
18 |
-
}
|
19 |
-
|
20 |
-
# Save company data
|
21 |
-
pd.DataFrame([company_data]).to_csv('data/startup_data.csv', index=False)
|
22 |
-
|
23 |
-
# Cash flow history
|
24 |
-
cash_flow_data = {
|
25 |
-
"Month": [f"Month {i}" for i in range(1, 11)],
|
26 |
-
"Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800],
|
27 |
-
"Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000],
|
28 |
-
"Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000],
|
29 |
-
"Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000],
|
30 |
-
"Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200],
|
31 |
-
"Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000],
|
32 |
-
"Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200],
|
33 |
-
"Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800]
|
34 |
-
}
|
35 |
-
|
36 |
-
# Add calculated fields
|
37 |
-
df = pd.DataFrame(cash_flow_data)
|
38 |
-
df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
|
39 |
-
df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"]
|
40 |
-
|
41 |
-
# Save cash flow data
|
42 |
-
df.to_csv('data/projections.csv', index=False)
|
43 |
-
|
44 |
-
# Transaction data
|
45 |
-
transactions = pd.DataFrame([
|
46 |
-
{"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"},
|
47 |
-
{"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"},
|
48 |
-
{"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"},
|
49 |
-
{"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"},
|
50 |
-
{"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"},
|
51 |
-
{"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"},
|
52 |
-
{"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
|
53 |
-
{"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"},
|
54 |
-
{"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"},
|
55 |
-
{"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"},
|
56 |
-
{"Date": "2024-01-05", "Category": "Travel", "Vendor": "Delta Airlines", "Amount": 1200, "Description": "Client Meeting Travel", "Flag": "Normal"},
|
57 |
-
{"Date": "2024-01-10", "Category": "Marketing", "Vendor": "Facebook Ads", "Amount": 4500, "Description": "Social Media Campaign", "Flag": "Normal"},
|
58 |
-
{"Date": "2024-01-15", "Category": "Software", "Vendor": "Atlassian", "Amount": 2800, "Description": "Development Tools", "Flag": "Normal"},
|
59 |
-
{"Date": "2024-01-20", "Category": "Payroll", "Vendor": "January Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
|
60 |
-
{"Date": "2024-01-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"}
|
61 |
-
])
|
62 |
-
|
63 |
-
# Save transactions data
|
64 |
-
transactions.to_csv('data/transactions.csv', index=False)
|
65 |
-
|
66 |
-
# Create a separate file for suspicious transactions for easier analysis
|
67 |
-
suspicious = transactions[transactions['Flag'] == 'Suspicious']
|
68 |
-
suspicious.to_csv('data/suspicious.csv', index=False)
|
69 |
-
|
70 |
-
print("Sample data files have been created in the 'data' directory.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|