import streamlit as st
import pandas as pd
import numpy as np
import os
from datetime import datetime, timedelta, date
import time
import io
import base64
# Import your existing pages (make sure they're in the same directory or in a 'pages' directory)
# If you have these in separate files, you'll need to adjust the imports
# For example:
# from pages.dashboard import render_financial_dashboard
# from pages.decision_simulator import render_decision_simulator
# from pages.fund_monitoring import render_fund_monitoring
# from pages.advisor import render_ai_financial_advisor
# Constants
DEFAULT_GROWTH_RATE = 0.08 # 8% monthly growth
DEFAULT_BURN_RATE = 85000 # $85,000 monthly burn
ENGINEER_SALARY = 10000 # $10,000 monthly cost per engineer ($120K/year)
# Initialize session state variables
if 'startups' not in st.session_state:
st.session_state.startups = {} # Dictionary to store multiple startup data
if 'current_startup' not in st.session_state:
st.session_state.current_startup = None # Currently selected startup
if 'current_page' not in st.session_state:
st.session_state.current_page = 'upload' # Default page
if 'insights_cache' not in st.session_state:
st.session_state.insights_cache = {}
def switch_page(page_name):
"""Function to switch between pages"""
st.session_state.current_page = page_name
st.rerun()
# Page config
st.set_page_config(
page_title="StartupFinancePilot",
page_icon="💰",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
""", unsafe_allow_html=True)
# Sample data
def load_sample_data():
"""Load sample data for demonstration"""
# TechHealth AI data
startup_data = {
"name": "TechHealth AI",
"stage": "Seed",
"founded": "18 months ago",
"employees": 12,
"last_funding": "$1.2M seed round 10 months ago",
"cash": 320000,
"burn_rate": 85000,
"revenue": 15000,
"growth_rate": 0.08
}
# Cash flow history
cash_flow_data = {
"Month": [f"Month {i}" for i in range(1, 11)],
"Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800],
"Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000],
"Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000],
"Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000],
"Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200],
"Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000],
"Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200],
"Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800]
}
# Add calculated fields
df = pd.DataFrame(cash_flow_data)
df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"]
# Transaction data
transactions = pd.DataFrame([
{"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"},
{"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"},
{"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"},
{"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"},
{"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"},
{"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"},
{"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"},
{"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"},
{"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"},
{"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"}
])
return startup_data, df, transactions
# Parse CSV file to dataframe
def parse_csv_to_df(file):
"""Parse uploaded CSV file to Pandas DataFrame"""
try:
df = pd.read_csv(file)
return df, None
except Exception as e:
return None, f"Error parsing CSV: {e}"
# Upload and process financial data files
def render_upload_page():
"""Render the upload page for startup data"""
st.markdown("
Upload Your Startup Data
", unsafe_allow_html=True)
st.markdown("", unsafe_allow_html=True)
with st.expander("Upload Instructions", expanded=False):
st.markdown("""
### How to Upload Your Startup Data
You can upload three types of files:
1. **Company Profile** - A CSV with basic information about your startup including:
- name, stage, founded, employees, last_funding, cash, burn_rate, revenue, growth_rate
2. **Cash Flow Data** - A CSV with monthly cash flow data with columns:
- Month, Revenue, Payroll, Marketing, Office, Software, Travel, Legal, Misc
3. **Transaction Data** - A CSV with transaction details:
- Date, Category, Vendor, Amount, Description, Flag
If you don't have these files ready, you can use our sample data.
""")
col1, col2 = st.columns(2)
with col1:
startup_name = st.text_input("Startup Name", value="My Startup")
profile_file = st.file_uploader("Upload Company Profile (CSV)", type=['csv'])
cash_flow_file = st.file_uploader("Upload Cash Flow Data (CSV)", type=['csv'])
transactions_file = st.file_uploader("Upload Transactions Data (CSV)", type=['csv'])
with col2:
st.markdown("""
Why Upload Your Data?
By uploading your actual financial data, you'll get:
- Personalized AI insights tailored to your startup
- Accurate runway projections based on your real spending patterns
- Custom recommendations to optimize your burn rate
- More realistic decision simulations
All data is processed securely and never stored permanently.
""", unsafe_allow_html=True)
# Process the files if uploaded
if st.button("Process Data"):
# Initialize with default values
startup_data = {
"name": startup_name,
"stage": "Seed",
"founded": "12 months ago",
"employees": 5,
"last_funding": "Not specified",
"cash": 100000,
"burn_rate": 20000,
"revenue": 5000,
"growth_rate": 0.05
}
cash_flow_df = None
transactions_df = None
# Parse company profile
if profile_file:
try:
profile_df, error = parse_csv_to_df(profile_file)
if error:
st.error(error)
else:
# Get the first row as a dictionary
if len(profile_df) > 0:
startup_data.update(profile_df.iloc[0].to_dict())
st.success(f"Successfully loaded company profile for {startup_data['name']}")
except Exception as e:
st.error(f"Error processing company profile: {e}")
# Parse cash flow data
if cash_flow_file:
cash_flow_df, error = parse_csv_to_df(cash_flow_file)
if error:
st.error(error)
else:
# Add calculated fields if not present
if "Total_Expenses" not in cash_flow_df.columns:
expense_columns = [col for col in cash_flow_df.columns if col not in ["Month", "Revenue", "Total_Expenses", "Net_Burn"]]
cash_flow_df["Total_Expenses"] = cash_flow_df[expense_columns].sum(axis=1)
if "Net_Burn" not in cash_flow_df.columns:
cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"]
st.success("Successfully loaded cash flow data")
# Parse transactions data
if transactions_file:
transactions_df, error = parse_csv_to_df(transactions_file)
if error:
st.error(error)
else:
# Ensure transactions data has required columns
required_columns = ["Date", "Category", "Vendor", "Amount", "Description"]
if all(col in transactions_df.columns for col in required_columns):
if "Flag" not in transactions_df.columns:
transactions_df["Flag"] = "Normal" # Default flag
st.success("Successfully loaded transactions data")
else:
st.error("Transactions file is missing required columns")
# If any files were processed, save the data to session state
if profile_file or cash_flow_file or transactions_file:
if cash_flow_df is None:
# Create a sample cash flow dataframe if none was uploaded
cash_flow_data = {
"Month": [f"Month {i}" for i in range(1, 7)],
"Revenue": [startup_data['revenue'] * (1 + startup_data['growth_rate'])**i for i in range(6)],
"Payroll": [startup_data['burn_rate'] * 0.7] * 6,
"Marketing": [startup_data['burn_rate'] * 0.15] * 6,
"Office": [startup_data['burn_rate'] * 0.05] * 6,
"Software": [startup_data['burn_rate'] * 0.03] * 6,
"Travel": [startup_data['burn_rate'] * 0.02] * 6,
"Legal": [startup_data['burn_rate'] * 0.01] * 6,
"Misc": [startup_data['burn_rate'] * 0.04] * 6
}
cash_flow_df = pd.DataFrame(cash_flow_data)
cash_flow_df["Total_Expenses"] = cash_flow_df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"]
if transactions_df is None:
# Create a sample transactions dataframe if none was uploaded
transactions_data = {
"Date": [(datetime.now() - timedelta(days=i*5)).strftime("%Y-%m-%d") for i in range(10)],
"Category": ["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc", "Payroll", "Marketing", "Office"],
"Vendor": ["Payroll Provider", "Facebook Ads", "Office Rent", "AWS", "Travel Agency", "Legal Firm", "Miscellaneous", "Payroll Provider", "Google Ads", "Office Supplies"],
"Amount": [startup_data['burn_rate'] * 0.7, startup_data['burn_rate'] * 0.15, startup_data['burn_rate'] * 0.05, startup_data['burn_rate'] * 0.03, startup_data['burn_rate'] * 0.02, startup_data['burn_rate'] * 0.01, startup_data['burn_rate'] * 0.04, startup_data['burn_rate'] * 0.7, startup_data['burn_rate'] * 0.15, startup_data['burn_rate'] * 0.05],
"Description": ["Monthly Payroll", "Ad Campaign", "Monthly Rent", "Cloud Services", "Business Travel", "Legal Services", "Miscellaneous Expenses", "Monthly Payroll", "Ad Campaign", "Office Supplies"],
"Flag": ["Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal"]
}
transactions_df = pd.DataFrame(transactions_data)
# Store in session state
st.session_state.startups[startup_data['name']] = {
'profile': startup_data,
'cash_flow': cash_flow_df,
'transactions': transactions_df
}
# Set as current startup
st.session_state.current_startup = startup_data['name']
st.success(f"Successfully added {startup_data['name']} to your startups")
st.info("You can now analyze this startup's data in the dashboard")
# Redirect to dashboard
switch_page('dashboard')
# Sample data options
st.subheader("Or Use Sample Data")
sample_col1, sample_col2 = st.columns(2)
with sample_col1:
if st.button("Use TechHealth AI Sample"):
# Load sample data
startup_data, cash_flow_df, transactions_df = load_sample_data()
# Store in session state
st.session_state.startups["TechHealth AI"] = {
'profile': startup_data,
'cash_flow': cash_flow_df,
'transactions': transactions_df
}
# Set as current startup
st.session_state.current_startup = "TechHealth AI"
st.success("Successfully loaded TechHealth AI sample data")
# Redirect to dashboard
switch_page('dashboard')
with sample_col2:
if st.button("Use Custom Sample"):
# Create a custom sample
startup_data = {
"name": "GreenTech Innovations",
"stage": "Series A",
"founded": "3 years ago",
"employees": 25,
"last_funding": "$4.5M Series A 8 months ago",
"cash": 2800000,
"burn_rate": 220000,
"revenue": 75000,
"growth_rate": 0.12
}
# Sample cash flow data
cash_flow_data = {
"Month": [f"Month {i}" for i in range(1, 11)],
"Revenue": [45000, 48000, 52000, 57000, 62000, 66000, 70000, 72000, 74000, 75000],
"Payroll": [140000, 142000, 145000, 150000, 160000, 165000, 175000, 180000, 185000, 190000],
"Marketing": [25000, 28000, 30000, 32000, 35000, 32000, 30000, 28000, 26000, 25000],
"Office": [12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000],
"Software": [8000, 8500, 9000, 9500, 10000, 10500, 11000, 11500, 12000, 12500],
"Travel": [5000, 6000, 7000, 8000, 7000, 6000, 5000, 6000, 7000, 8000],
"Legal": [4000, 3000, 3500, 2500, 3000, 4000, 3500, 3000, 2500, 3000],
"Misc": [3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500]
}
cash_flow_df = pd.DataFrame(cash_flow_data)
cash_flow_df["Total_Expenses"] = cash_flow_df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1)
cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"]
# Sample transaction data
transactions_df = pd.DataFrame([
{"Date": "2023-11-10", "Category": "Travel", "Vendor": "First Class Flights", "Amount": 12000, "Description": "Executive Retreat", "Flag": "Suspicious"},
{"Date": "2023-11-18", "Category": "Marketing", "Vendor": "VIP Events Co", "Amount": 18000, "Description": "Investor Dinner", "Flag": "Suspicious"},
{"Date": "2023-12-01", "Category": "Office", "Vendor": "Luxury Furniture", "Amount": 25000, "Description": "Executive Office Upgrade", "Flag": "Suspicious"},
{"Date": "2023-12-15", "Category": "Legal", "Vendor": "Premium Law Group", "Amount": 35000, "Description": "Legal Consultation", "Flag": "Normal"},
{"Date": "2023-12-20", "Category": "Payroll", "Vendor": "December Payroll", "Amount": 190000, "Description": "Monthly Payroll", "Flag": "Normal"}
])
# Store in session state
st.session_state.startups["GreenTech Innovations"] = {
'profile': startup_data,
'cash_flow': cash_flow_df,
'transactions': transactions_df
}
# Set as current startup
st.session_state.current_startup = "GreenTech Innovations"
st.success("Successfully loaded GreenTech Innovations sample data")
# Redirect to dashboard
switch_page('dashboard')
# Create sidebar navigation
def create_sidebar():
with st.sidebar:
# Title box that works as home button
st.markdown("""
💰 StartupFinancePilot
AI-powered financial assistant for startups
""", unsafe_allow_html=True)
# Startup selector (if there are startups in the session state)
if st.session_state.startups:
st.subheader("Selected Startup")
startup_names = list(st.session_state.startups.keys())
selected_startup = st.selectbox(
"Choose Startup",
startup_names,
index=startup_names.index(st.session_state.current_startup) if st.session_state.current_startup in startup_names else 0
)
st.session_state.current_startup = selected_startup
# Show basic startup info
if selected_startup in st.session_state.startups:
startup_data = st.session_state.startups[selected_startup]['profile']
st.markdown(f"""
**Stage:** {startup_data['stage']}
**Cash:** ${startup_data['cash']:,}
**Monthly Burn:** ${startup_data['burn_rate']:,}
**Monthly Revenue:** ${startup_data['revenue']:,}
""")
st.markdown("
", unsafe_allow_html=True) # Divider
# Upload data button at the top
if st.button("📤 Upload Startup Data", use_container_width=True):
switch_page('upload')
# Navigation buttons
if st.button("📊 Financial Dashboard", use_container_width=True):
switch_page('dashboard')
if st.button("🔮 Decision Simulator", use_container_width=True):
switch_page('simulator')
if st.button("🕵️ Fund Monitoring", use_container_width=True):
switch_page('monitoring')
if st.button("🤖 AI Financial Advisor", use_container_width=True):
switch_page('advisor')
# Main function
def main():
# Create sidebar navigation
create_sidebar()
# Check if we have any data to work with
if not st.session_state.startups and st.session_state.current_page != 'upload':
st.warning("No startup data found. Please upload your data or use a sample dataset.")
render_upload_page()
return
# Render the correct page based on session state
if st.session_state.current_page == 'upload':
render_upload_page()
elif st.session_state.current_page == 'dashboard':
# Replace with your dashboard page function
from dashboard import render_financial_dashboard
render_financial_dashboard(
st.session_state.startups[st.session_state.current_startup]['profile'],
st.session_state.startups[st.session_state.current_startup]['cash_flow']
)
elif st.session_state.current_page == 'simulator':
# Replace with your simulator page function
from decision_simulator import render_decision_simulator
render_decision_simulator(
st.session_state.startups[st.session_state.current_startup]['profile']
)
elif st.session_state.current_page == 'monitoring':
# Replace with your monitoring page function
from fund_monitoring import render_fund_monitoring
render_fund_monitoring(
st.session_state.startups[st.session_state.current_startup]['transactions']
)
elif st.session_state.current_page == 'advisor':
# Replace with your advisor page function
from advisor import render_ai_financial_advisor
render_ai_financial_advisor(
st.session_state.startups[st.session_state.current_startup]['profile']
)
if __name__ == "__main__":
main()