import streamlit as st import pandas as pd import numpy as np import os from datetime import datetime, timedelta, date import time import io import base64 import plotly.express as px import plotly.graph_objects as go from datetime import datetime, timedelta, date import time import json import google.generativeai as genai from google.generativeai.types import HarmCategory, HarmBlockThreshold # Setup AI Services def setup_genai(): """Initialize and configure Google's Generative AI and list available models""" try: # Try getting API key from Streamlit secrets first if 'GOOGLE_API_KEY' in st.secrets: api_key = st.secrets['GOOGLE_API_KEY'] # Fall back to environment variable elif 'GOOGLE_API_KEY' in os.environ: api_key = os.environ['GOOGLE_API_KEY'] else: st.warning("Google API key not found. Using simulated AI responses.") st.session_state.gemini_model = "gemini-1.5-pro" return False genai.configure(api_key=api_key) # Import pages from pages.dashboard-page import render_financial_dashboard, get_runway_analysis, get_fundraising_readiness_analysis from pages.decision-simulator import render_decision_simulator, get_decision_analysis from pages.fund-monitoring import render_fund_monitoring, get_fraud_analysis from pages.financial-advisor import render_ai_financial_advisor, get_advisory_guidance, generate_voice_response from pages.book-session import render_book_session # Initialize page configuration st.set_page_config( page_title="StartupFinancePilot", page_icon="💰", layout="wide", initial_sidebar_state="expanded" ) # Initialize session state variables if 'booked_sessions' not in st.session_state: st.session_state.booked_sessions = [] if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if 'audio_response' not in st.session_state: st.session_state.audio_response = None if 'insights_cache' not in st.session_state: st.session_state.insights_cache = {} if 'gemini_model' not in st.session_state: st.session_state.gemini_model = None if 'current_page' not in st.session_state: st.session_state.current_page = "Financial Dashboard" from pages.dashboard import render_financial_dashboard from pages.decision_simulator import render_decision_simulator from pages.fund_monitoring import render_fund_monitoring from pages.advisor import render_ai_financial_advisor # Constants DEFAULT_GROWTH_RATE = 0.08 # 8% monthly growth DEFAULT_BURN_RATE = 85000 # $85,000 monthly burn ENGINEER_SALARY = 10000 # $10,000 monthly cost per engineer ($120K/year) # Initialize session state variables if 'startups' not in st.session_state: st.session_state.startups = {} # Dictionary to store multiple startup data if 'current_startup' not in st.session_state: st.session_state.current_startup = None # Currently selected startup if 'current_page' not in st.session_state: st.session_state.current_page = 'upload' # Default page if 'insights_cache' not in st.session_state: st.session_state.insights_cache = {} def switch_page(page_name): """Function to switch between pages""" st.session_state.current_page = page_name st.rerun() # Page config st.set_page_config( page_title="StartupFinancePilot", page_icon="💰", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) # Sample data def load_sample_data(): """Load sample data for demonstration""" # TechHealth AI data startup_data = { "name": "TechHealth AI", "stage": "Seed", "founded": "18 months ago", "employees": 12, "last_funding": "$1.2M seed round 10 months ago", "cash": 320000, "burn_rate": 85000, "revenue": 15000, "growth_rate": 0.08 } # Cash flow history cash_flow_data = { "Month": [f"Month {i}" for i in range(1, 11)], "Revenue": [8000, 8500, 9200, 10000, 10800, 11700, 12600, 13600, 14700, 15800], "Payroll": [60000, 60000, 62000, 62000, 65000, 65000, 70000, 70000, 75000, 75000], "Marketing": [8000, 9000, 10000, 12000, 15000, 18000, 15000, 12000, 10000, 8000], "Office": [5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000], "Software": [3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5200], "Travel": [2000, 1800, 2500, 3000, 4000, 4500, 3500, 3000, 2500, 2000], "Legal": [1500, 1000, 800, 1200, 800, 2000, 1500, 1000, 3000, 1200], "Misc": [1000, 1200, 1300, 1500, 1700, 1800, 2000, 2200, 2500, 2800] } # Add calculated fields df = pd.DataFrame(cash_flow_data) df["Total_Expenses"] = df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1) df["Net_Burn"] = df["Total_Expenses"] - df["Revenue"] # Transaction data transactions = pd.DataFrame([ {"Date": "2023-11-05", "Category": "Travel", "Vendor": "Caribbean Cruises", "Amount": 8500, "Description": "Team Retreat Planning", "Flag": "Suspicious"}, {"Date": "2023-11-12", "Category": "Marketing", "Vendor": "LuxuryGifts Inc", "Amount": 4200, "Description": "Client Appreciation", "Flag": "Suspicious"}, {"Date": "2023-11-22", "Category": "Office", "Vendor": "Premium Furniture", "Amount": 12000, "Description": "Office Upgrades", "Flag": "Suspicious"}, {"Date": "2023-11-28", "Category": "Consulting", "Vendor": "Strategic Vision LLC", "Amount": 7500, "Description": "Strategy Consulting", "Flag": "Suspicious"}, {"Date": "2023-12-05", "Category": "Software", "Vendor": "Personal Apple Store", "Amount": 3200, "Description": "Development Tools", "Flag": "Suspicious"}, {"Date": "2023-12-12", "Category": "Legal", "Vendor": "Anderson Brothers", "Amount": 5800, "Description": "Legal Services", "Flag": "Normal"}, {"Date": "2023-12-20", "Category": "Payroll", "Vendor": "November Payroll", "Amount": 75000, "Description": "Monthly Payroll", "Flag": "Normal"}, {"Date": "2023-12-22", "Category": "Marketing", "Vendor": "Google Ads", "Amount": 8000, "Description": "Ad Campaign", "Flag": "Normal"}, {"Date": "2023-12-25", "Category": "Office", "Vendor": "WeWork", "Amount": 5000, "Description": "Monthly Rent", "Flag": "Normal"}, {"Date": "2023-12-28", "Category": "Software", "Vendor": "AWS", "Amount": 5200, "Description": "Cloud Services", "Flag": "Normal"} ]) return startup_data, df, transactions # Parse CSV file to dataframe def parse_csv_to_df(file): """Parse uploaded CSV file to Pandas DataFrame""" try: df = pd.read_csv(file) return df, None except Exception as e: return None, f"Error parsing CSV: {e}" # Upload and process financial data files def render_upload_page(): """Render the upload page for startup data""" st.markdown("

Upload Your Startup Data

", unsafe_allow_html=True) st.markdown("

Upload CSV files or use sample data to get started

", unsafe_allow_html=True) with st.expander("Upload Instructions", expanded=False): st.markdown(""" ### How to Upload Your Startup Data You can upload three types of files: 1. **Company Profile** - A CSV with basic information about your startup including: - name, stage, founded, employees, last_funding, cash, burn_rate, revenue, growth_rate 2. **Cash Flow Data** - A CSV with monthly cash flow data with columns: - Month, Revenue, Payroll, Marketing, Office, Software, Travel, Legal, Misc 3. **Transaction Data** - A CSV with transaction details: - Date, Category, Vendor, Amount, Description, Flag If you don't have these files ready, you can use our sample data. """) col1, col2 = st.columns(2) with col1: startup_name = st.text_input("Startup Name", value="My Startup") profile_file = st.file_uploader("Upload Company Profile (CSV)", type=['csv']) cash_flow_file = st.file_uploader("Upload Cash Flow Data (CSV)", type=['csv']) transactions_file = st.file_uploader("Upload Transactions Data (CSV)", type=['csv']) with col2: st.markdown("""

Why Upload Your Data?

By uploading your actual financial data, you'll get:

All data is processed securely and never stored permanently.

""", unsafe_allow_html=True) # Process the files if uploaded if st.button("Process Data"): # Initialize with default values startup_data = { "name": startup_name, "stage": "Seed", "founded": "12 months ago", "employees": 5, "last_funding": "Not specified", "cash": 100000, "burn_rate": 20000, "revenue": 5000, "growth_rate": 0.05 } cash_flow_df = None transactions_df = None # Parse company profile if profile_file: try: profile_df, error = parse_csv_to_df(profile_file) if error: st.error(error) else: # Get the first row as a dictionary if len(profile_df) > 0: startup_data.update(profile_df.iloc[0].to_dict()) st.success(f"Successfully loaded company profile for {startup_data['name']}") except Exception as e: st.error(f"Error processing company profile: {e}") # Parse cash flow data if cash_flow_file: cash_flow_df, error = parse_csv_to_df(cash_flow_file) if error: st.error(error) else: # Add calculated fields if not present if "Total_Expenses" not in cash_flow_df.columns: expense_columns = [col for col in cash_flow_df.columns if col not in ["Month", "Revenue", "Total_Expenses", "Net_Burn"]] cash_flow_df["Total_Expenses"] = cash_flow_df[expense_columns].sum(axis=1) if "Net_Burn" not in cash_flow_df.columns: cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"] st.success("Successfully loaded cash flow data") # Parse transactions data if transactions_file: transactions_df, error = parse_csv_to_df(transactions_file) if error: st.error(error) else: # Ensure transactions data has required columns required_columns = ["Date", "Category", "Vendor", "Amount", "Description"] if all(col in transactions_df.columns for col in required_columns): if "Flag" not in transactions_df.columns: transactions_df["Flag"] = "Normal" # Default flag st.success("Successfully loaded transactions data") else: st.error("Transactions file is missing required columns") # If any files were processed, save the data to session state if profile_file or cash_flow_file or transactions_file: if cash_flow_df is None: # Create a sample cash flow dataframe if none was uploaded cash_flow_data = { "Month": [f"Month {i}" for i in range(1, 7)], "Revenue": [startup_data['revenue'] * (1 + startup_data['growth_rate'])**i for i in range(6)], "Payroll": [startup_data['burn_rate'] * 0.7] * 6, "Marketing": [startup_data['burn_rate'] * 0.15] * 6, "Office": [startup_data['burn_rate'] * 0.05] * 6, "Software": [startup_data['burn_rate'] * 0.03] * 6, "Travel": [startup_data['burn_rate'] * 0.02] * 6, "Legal": [startup_data['burn_rate'] * 0.01] * 6, "Misc": [startup_data['burn_rate'] * 0.04] * 6 } cash_flow_df = pd.DataFrame(cash_flow_data) cash_flow_df["Total_Expenses"] = cash_flow_df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1) cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"] if transactions_df is None: # Create a sample transactions dataframe if none was uploaded transactions_data = { "Date": [(datetime.now() - timedelta(days=i*5)).strftime("%Y-%m-%d") for i in range(10)], "Category": ["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc", "Payroll", "Marketing", "Office"], "Vendor": ["Payroll Provider", "Facebook Ads", "Office Rent", "AWS", "Travel Agency", "Legal Firm", "Miscellaneous", "Payroll Provider", "Google Ads", "Office Supplies"], "Amount": [startup_data['burn_rate'] * 0.7, startup_data['burn_rate'] * 0.15, startup_data['burn_rate'] * 0.05, startup_data['burn_rate'] * 0.03, startup_data['burn_rate'] * 0.02, startup_data['burn_rate'] * 0.01, startup_data['burn_rate'] * 0.04, startup_data['burn_rate'] * 0.7, startup_data['burn_rate'] * 0.15, startup_data['burn_rate'] * 0.05], "Description": ["Monthly Payroll", "Ad Campaign", "Monthly Rent", "Cloud Services", "Business Travel", "Legal Services", "Miscellaneous Expenses", "Monthly Payroll", "Ad Campaign", "Office Supplies"], "Flag": ["Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal"] } transactions_df = pd.DataFrame(transactions_data) # Store in session state st.session_state.startups[startup_data['name']] = { 'profile': startup_data, 'cash_flow': cash_flow_df, 'transactions': transactions_df } # Set as current startup st.session_state.current_startup = startup_data['name'] st.success(f"Successfully added {startup_data['name']} to your startups") st.info("You can now analyze this startup's data in the dashboard") # Redirect to dashboard switch_page('dashboard') # Sample data options st.subheader("Or Use Sample Data") sample_col1, sample_col2 = st.columns(2) with sample_col1: if st.button("Use TechHealth AI Sample"): # Load sample data startup_data, cash_flow_df, transactions_df = load_sample_data() # Store in session state st.session_state.startups["TechHealth AI"] = { 'profile': startup_data, 'cash_flow': cash_flow_df, 'transactions': transactions_df } # Set as current startup st.session_state.current_startup = "TechHealth AI" st.success("Successfully loaded TechHealth AI sample data") # Redirect to dashboard switch_page('dashboard') with sample_col2: if st.button("Use Custom Sample"): # Create a custom sample startup_data = { "name": "GreenTech Innovations", "stage": "Series A", "founded": "3 years ago", "employees": 25, "last_funding": "$4.5M Series A 8 months ago", "cash": 2800000, "burn_rate": 220000, "revenue": 75000, "growth_rate": 0.12 } # Sample cash flow data cash_flow_data = { "Month": [f"Month {i}" for i in range(1, 11)], "Revenue": [45000, 48000, 52000, 57000, 62000, 66000, 70000, 72000, 74000, 75000], "Payroll": [140000, 142000, 145000, 150000, 160000, 165000, 175000, 180000, 185000, 190000], "Marketing": [25000, 28000, 30000, 32000, 35000, 32000, 30000, 28000, 26000, 25000], "Office": [12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000, 12000], "Software": [8000, 8500, 9000, 9500, 10000, 10500, 11000, 11500, 12000, 12500], "Travel": [5000, 6000, 7000, 8000, 7000, 6000, 5000, 6000, 7000, 8000], "Legal": [4000, 3000, 3500, 2500, 3000, 4000, 3500, 3000, 2500, 3000], "Misc": [3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500] } cash_flow_df = pd.DataFrame(cash_flow_data) cash_flow_df["Total_Expenses"] = cash_flow_df[["Payroll", "Marketing", "Office", "Software", "Travel", "Legal", "Misc"]].sum(axis=1) cash_flow_df["Net_Burn"] = cash_flow_df["Total_Expenses"] - cash_flow_df["Revenue"] # Sample transaction data transactions_df = pd.DataFrame([ {"Date": "2023-11-10", "Category": "Travel", "Vendor": "First Class Flights", "Amount": 12000, "Description": "Executive Retreat", "Flag": "Suspicious"}, {"Date": "2023-11-18", "Category": "Marketing", "Vendor": "VIP Events Co", "Amount": 18000, "Description": "Investor Dinner", "Flag": "Suspicious"}, {"Date": "2023-12-01", "Category": "Office", "Vendor": "Luxury Furniture", "Amount": 25000, "Description": "Executive Office Upgrade", "Flag": "Suspicious"}, {"Date": "2023-12-15", "Category": "Legal", "Vendor": "Premium Law Group", "Amount": 35000, "Description": "Legal Consultation", "Flag": "Normal"}, {"Date": "2023-12-20", "Category": "Payroll", "Vendor": "December Payroll", "Amount": 190000, "Description": "Monthly Payroll", "Flag": "Normal"} ]) # Store in session state st.session_state.startups["GreenTech Innovations"] = { 'profile': startup_data, 'cash_flow': cash_flow_df, 'transactions': transactions_df } # Set as current startup st.session_state.current_startup = "GreenTech Innovations" st.success("Successfully loaded GreenTech Innovations sample data") # Redirect to dashboard switch_page('dashboard') # Create sidebar navigation def create_sidebar(): with st.sidebar: # Title box that works as home button st.markdown("""

💰 StartupFinancePilot

AI-powered financial assistant for startups

""", unsafe_allow_html=True) # Startup selector (if there are startups in the session state) if st.session_state.startups: st.subheader("Selected Startup") startup_names = list(st.session_state.startups.keys()) selected_startup = st.selectbox( "Choose Startup", startup_names, index=startup_names.index(st.session_state.current_startup) if st.session_state.current_startup in startup_names else 0 ) st.session_state.current_startup = selected_startup # Show basic startup info if selected_startup in st.session_state.startups: startup_data = st.session_state.startups[selected_startup]['profile'] st.markdown(f""" **Stage:** {startup_data['stage']} **Cash:** ${startup_data['cash']:,} **Monthly Burn:** ${startup_data['burn_rate']:,} **Monthly Revenue:** ${startup_data['revenue']:,} """) st.markdown("
", unsafe_allow_html=True) # Divider # Upload data button at the top if st.button("📤 Upload Startup Data", use_container_width=True): switch_page('upload') # Navigation buttons if st.button("📊 Financial Dashboard", use_container_width=True): switch_page('dashboard') if st.button("🔮 Decision Simulator", use_container_width=True): switch_page('simulator') if st.button("🕵️ Fund Monitoring", use_container_width=True): switch_page('monitoring') if st.button("🤖 AI Financial Advisor", use_container_width=True): switch_page('advisor') def main(): # Load sample data startup_data, cash_flow_df, transactions_df = load_sample_data() # Create sidebar st.sidebar.title("StartupFinancePilot") st.sidebar.image("https://img.freepik.com/premium-vector/business-finance-analytics-logo-design-vector-template_67715-552.jpg", width=150) # Company profile st.sidebar.header("Company Profile") st.sidebar.write(f"**{startup_data['name']}**") st.sidebar.write(f"Stage: {startup_data['stage']}") st.sidebar.write(f"Founded: {startup_data['founded']}") st.sidebar.write(f"Employees: {startup_data['employees']}") st.sidebar.write(f"Last Funding: {startup_data['last_funding']}") # Navigation st.sidebar.header("Navigation") pages = { "Financial Dashboard": render_financial_dashboard, "Decision Simulator": render_decision_simulator, "Fund Monitoring": render_fund_monitoring, "AI Financial Advisor": render_ai_financial_advisor, "Book a Session": render_book_session } # Page selection selected_page = st.sidebar.radio("Go to", list(pages.keys())) st.session_state.current_page = selected_page # Render selected page if selected_page == "Financial Dashboard": pages[selected_page](startup_data, cash_flow_df) elif selected_page == "Decision Simulator": pages[selected_page](startup_data) elif selected_page == "Fund Monitoring": pages[selected_page](transactions_df) elif selected_page == "AI Financial Advisor": pages[selected_page](startup_data) else: # Book a Session pages[selected_page]() if __name__ == "__main__": main()