Spaces:
Sleeping
Sleeping
File size: 15,234 Bytes
558a79e 525f1d7 558a79e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import gradio as gr
import pandas as pd
import json
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSequenceClassification
)
import torch
import numpy as np
import re
class FinancialDataset:
def __init__(self, texts, labels, tokenizer, max_length=512):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = str(self.texts[idx])
inputs = self.tokenizer(
text,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_tensors='pt'
)
return {
'input_ids': inputs['input_ids'].squeeze(),
'attention_mask': inputs['attention_mask'].squeeze(),
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
}
class FinancialAnalyzer:
def __init__(self):
print("Initializing Analyzer...")
self.last_metrics = {}
self.initialize_models()
print("Initialization complete!")
def initialize_models(self):
"""Initialize TinyLlama model"""
try:
self.llama_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.llama_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.llama_model.eval()
print("Models loaded successfully!")
except Exception as e:
print(f"Error initializing models: {str(e)}")
raise
def clean_number(self, value):
"""Clean and convert numerical values"""
try:
if isinstance(value, str):
value = value.replace('$', '').replace(',', '').strip()
if '(' in value and ')' in value:
value = '-' + value.replace('(', '').replace(')', '')
return float(value or 0)
except:
return 0.0
def is_valid_markdown(self, file_path):
"""Check if a file is a valid Markdown file"""
try:
with open(file_path, 'r') as f:
content = f.read()
return any(line.startswith('#') or '|' in line for line in content.split('\n'))
except:
return False
def parse_financial_data(self, content):
"""Parse markdown content into structured data"""
try:
data = {}
current_section = ""
current_table = []
headers = None
for line in content.split('\n'):
if line.startswith('#'):
if current_table and headers:
data[current_section] = self.process_table(headers, current_table)
current_section = line.strip('# ')
current_table = []
headers = None
elif '|' in line:
if '-|-' not in line:
row = [cell.strip() for cell in line.split('|')[1:-1]]
if not headers:
headers = row
else:
current_table.append(row)
if current_table and headers:
data[current_section] = self.process_table(headers, current_table)
return data
except Exception as e:
print(f"Error parsing financial data: {str(e)}")
return {}
def process_table(self, headers, rows):
"""Process table data into structured format"""
try:
processed_data = {}
for row in rows:
if len(row) == len(headers):
item_name = row[0].strip('*').strip()
processed_data[item_name] = {}
for i, value in enumerate(row[1:], 1):
processed_data[item_name][headers[i]] = self.clean_number(value)
return processed_data
except Exception as e:
print(f"Error processing table: {str(e)}")
return {}
def get_nested_value(self, data, section, key, year):
"""Safely get nested dictionary value"""
try:
return data.get(section, {}).get(key, {}).get(str(year), 0)
except:
return 0
def calculate_metrics(self, income_data, balance_data):
"""Calculate all CFI standard financial metrics"""
try:
metrics = {}
# 1. Gross Profit Margin Ratio
revenue = self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2025")
cogs = self.get_nested_value(income_data, "Operating Expenses", "Cost of Goods Sold", "2025")
gross_profit = revenue - cogs
metrics['gross_profit_margin'] = (gross_profit / revenue) * 100 if revenue != 0 else 0
# 2. Current Ratio
current_assets = self.get_nested_value(balance_data, "Assets", "Total Current Assets", "2025")
current_liabilities = self.get_nested_value(balance_data, "Liabilities", "Total Current Liabilities", "2025")
metrics['current_ratio'] = current_assets / current_liabilities if current_liabilities != 0 else 0
# 3. Debt Ratio
total_liabilities = self.get_nested_value(balance_data, "Liabilities", "Total Liabilities", "2025")
total_assets = self.get_nested_value(balance_data, "Assets", "Total Assets", "2025")
metrics['debt_ratio'] = (total_liabilities / total_assets) * 100 if total_assets != 0 else 0
# 4. Sustainable Growth Rate (SGR)
net_income = self.get_nested_value(income_data, "Net Income", "Total Net Income", "2025")
equity = self.get_nested_value(balance_data, "Equity", "Total Shareholders Equity", "2025")
dividends = self.get_nested_value(income_data, "Dividends", "Dividends Paid", "2025")
roe = (net_income / equity) * 100 if equity != 0 else 0
retention_ratio = (net_income - dividends) / net_income if net_income != 0 else 0
metrics['sgr'] = roe * retention_ratio / 100 if roe != 0 else 0
# 5. Accounts Receivable Turnover
accounts_receivable = self.get_nested_value(balance_data, "Assets", "Accounts Receivable", "2025")
metrics['ar_turnover'] = revenue / accounts_receivable if accounts_receivable != 0 else 0
# 6. Return on Equity (ROE)
metrics['roe'] = roe
# 7. Net Profit Margin
metrics['net_profit_margin'] = (net_income / revenue) * 100 if revenue != 0 else 0
# 8. Retained Earnings Ratio
retained_earnings = self.get_nested_value(balance_data, "Equity", "Retained Earnings", "2025")
metrics['retained_earnings_ratio'] = (retained_earnings / total_assets) * 100 if total_assets != 0 else 0
# Additional YoY metrics
revenue_2024 = self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2024")
metrics['revenue_growth'] = ((revenue / revenue_2024) - 1) * 100 if revenue_2024 != 0 else 0
return metrics
except Exception as e:
print(f"Error calculating metrics: {str(e)}")
return {}
def analyze_financials(self, balance_sheet_path, income_statement_path):
try:
# Validate markdown files
if not self.is_valid_markdown(balance_sheet_path):
return "Invalid Balance Sheet file format. Please upload a valid Markdown file."
if not self.is_valid_markdown(income_statement_path):
return "Invalid Income Statement file format. Please upload a valid Markdown file."
# Read and parse files
with open(balance_sheet_path, 'r') as f:
balance_content = f.read()
with open(income_statement_path, 'r') as f:
income_content = f.read()
balance_data = self.parse_financial_data(balance_content)
income_data = self.parse_financial_data(income_content)
# Calculate metrics
metrics = self.calculate_metrics(income_data, balance_data)
# Generate analysis
return self.generate_analysis(metrics)
except Exception as e:
return f"Error analyzing financials: {e}"
def generate_analysis(self, metrics):
"""Generate comprehensive analysis"""
try:
prompt = f"""[INST] As a financial analyst, provide a comprehensive analysis based on these metrics:
1. Profitability:
- Gross Profit Margin: {metrics.get('gross_profit_margin', 0):.2f}%
- Net Profit Margin: {metrics.get('net_profit_margin', 0):.2f}%
- Return on Equity: {metrics.get('roe', 0):.2f}%
2. Liquidity & Efficiency:
- Current Ratio: {metrics.get('current_ratio', 0):.2f}
- Accounts Receivable Turnover: {metrics.get('ar_turnover', 0):.2f}
3. Financial Structure:
- Debt Ratio: {metrics.get('debt_ratio', 0):.2f}%
- Retained Earnings Ratio: {metrics.get('retained_earnings_ratio', 0):.2f}%
4. Growth:
- Sustainable Growth Rate: {metrics.get('sgr', 0):.2f}%
- Revenue Growth (YoY): {metrics.get('revenue_growth', 0):.2f}%
Provide:
1. Overall financial health assessment
2. Key strengths and concerns
3. Operational efficiency analysis
4. Specific recommendations for improvement
[/INST]"""
inputs = self.llama_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
outputs = self.llama_model.generate(
inputs["input_ids"],
max_new_tokens=1024,
min_new_tokens=200,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.2,
length_penalty=1.5
)
analysis = self.llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
if len(analysis.split()) < 100:
return self.generate_fallback_analysis(metrics)
return analysis
except Exception as e:
print(f"Error generating analysis: {str(e)}")
return self.generate_fallback_analysis(metrics)
def generate_fallback_analysis(self, metrics):
"""Generate basic analysis when model fails"""
try:
analysis = f"""Financial Analysis Summary:
1. Profitability Assessment:
- Gross Profit Margin: {metrics.get('gross_profit_margin', 0):.2f}%
({self.interpret_metric('gross_profit_margin', metrics.get('gross_profit_margin', 0))})
- Net Profit Margin: {metrics.get('net_profit_margin', 0):.2f}%
({self.interpret_metric('net_profit_margin', metrics.get('net_profit_margin', 0))})
- Return on Equity: {metrics.get('roe', 0):.2f}%
({self.interpret_metric('roe', metrics.get('roe', 0))})
2. Liquidity & Efficiency Analysis:
- Current Ratio: {metrics.get('current_ratio', 0):.2f}
({self.interpret_metric('current_ratio', metrics.get('current_ratio', 0))})
- AR Turnover: {metrics.get('ar_turnover', 0):.2f}
({self.interpret_metric('ar_turnover', metrics.get('ar_turnover', 0))})
3. Financial Structure:
- Debt Ratio: {metrics.get('debt_ratio', 0):.2f}%
({self.interpret_metric('debt_ratio', metrics.get('debt_ratio', 0))})
- Retained Earnings Ratio: {metrics.get('retained_earnings_ratio', 0):.2f}%
({self.interpret_metric('retained_earnings_ratio', metrics.get('retained_earnings_ratio', 0))})
4. Growth & Sustainability:
- Sustainable Growth Rate: {metrics.get('sgr', 0):.2f}%
({self.interpret_metric('sgr', metrics.get('sgr', 0))})
- Revenue Growth: {metrics.get('revenue_growth', 0):.2f}%
({self.interpret_metric('revenue_growth', metrics.get('revenue_growth', 0))})
{self.generate_recommendations(metrics)}"""
return analysis
except Exception as e:
return f"Error generating fallback analysis: {str(e)}"
def interpret_metric(self, metric_name, value):
"""Interpret individual metrics based on CFI standards"""
interpretations = {
'gross_profit_margin': lambda x: 'Strong' if x > 40 else 'Adequate' if x > 30 else 'Needs improvement',
'current_ratio': lambda x: 'Strong' if x > 2 else 'Adequate' if x > 1 else 'Concerning',
'debt_ratio': lambda x: 'Conservative' if x < 40 else 'Moderate' if x < 60 else 'High risk',
'ar_turnover': lambda x: 'Excellent' if x > 8 else 'Good' if x > 4 else 'Needs improvement',
'roe': lambda x: 'Strong' if x > 15 else 'Adequate' if x > 10 else 'Below target',
'net_profit_margin': lambda x: 'Strong' if x > 10 else 'Adequate' if x > 5 else 'Needs improvement',
'retained_earnings_ratio': lambda x: 'Strong' if x > 30 else 'Adequate' if x > 15 else 'Low retention',
'sgr': lambda x: 'Strong' if x > 10 else 'Moderate' if x > 5 else 'Limited growth potential',
'revenue_growth': lambda x: 'Strong' if x > 10 else 'Moderate' if x > 5 else 'Below industry average'
}
try:
return interpretations.get(metric_name, lambda x: 'No interpretation')(value)
except:
return 'Unable to interpret'
def generate_recommendations(self, metrics):
"""Generate specific recommendations based on metrics"""
recommendations = []
if metrics.get('gross_profit_margin', 0) < 30:
recommendations.append("- Review pricing strategy and cost structure to improve gross margins")
if metrics.get('current_ratio', 0) < 1.5:
recommendations.append("- Strengthen working capital management to improve liquidity")
if metrics.get('debt_ratio', 0) > 60:
recommendations.append("- Consider debt reduction strategies to improve financial flexibility")
if metrics.get('ar_turnover', 0) < 4:
recommendations.append("- Improve accounts receivable collection practices")
if metrics.get('roe', 0) < 10:
recommendations.append("- Focus on improving operational efficiency to enhance returns")
if metrics.get('revenue_growth', 0) < 5:
recommendations.append("- Develop strategies to accelerate revenue growth")
def create_interface():
analyzer = FinancialAnalyzer()
iface = gr.Interface(
fn=analyzer.analyze_financials,
inputs=[
gr.File(label="Balance Sheet (Markdown)", type="filepath"),
gr.File(label="Income Statement (Markdown)", type="filepath")
],
outputs=gr.Textbox(label="Analysis Results", lines=25),
title="AI Financial Statement Analyzer",
description="""Upload financial statements in Markdown format for AI-powered analysis.
Analysis is based on Corporate Finance Institute (CFI) standards.""",
examples=[
["balance_sheet_example.md", "income_statement_example.md"]
],
cache_examples=True
)
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch() |