Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import json | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
AutoModelForSequenceClassification | |
) | |
import torch | |
import numpy as np | |
import re | |
class FinancialDataset: | |
def __init__(self, texts, labels, tokenizer, max_length=512): | |
self.texts = texts | |
self.labels = labels | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
def __len__(self): | |
return len(self.texts) | |
def __getitem__(self, idx): | |
text = str(self.texts[idx]) | |
inputs = self.tokenizer( | |
text, | |
truncation=True, | |
padding='max_length', | |
max_length=self.max_length, | |
return_tensors='pt' | |
) | |
return { | |
'input_ids': inputs['input_ids'].squeeze(), | |
'attention_mask': inputs['attention_mask'].squeeze(), | |
'labels': torch.tensor(self.labels[idx], dtype=torch.long) | |
} | |
class FinancialAnalyzer: | |
def __init__(self): | |
print("Initializing Analyzer...") | |
self.last_metrics = {} | |
self.initialize_models() | |
print("Initialization complete!") | |
def initialize_models(self): | |
"""Initialize TinyLlama model""" | |
try: | |
self.llama_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
self.llama_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
self.llama_model.eval() | |
print("Models loaded successfully!") | |
except Exception as e: | |
print(f"Error initializing models: {str(e)}") | |
raise | |
def clean_number(self, value): | |
"""Clean and convert numerical values""" | |
try: | |
if isinstance(value, str): | |
value = value.replace('$', '').replace(',', '').strip() | |
if '(' in value and ')' in value: | |
value = '-' + value.replace('(', '').replace(')', '') | |
return float(value or 0) | |
except: | |
return 0.0 | |
def is_valid_markdown(self, file_path): | |
"""Check if a file is a valid Markdown file""" | |
try: | |
with open(file_path, 'r') as f: | |
content = f.read() | |
return any(line.startswith('#') or '|' in line for line in content.split('\n')) | |
except: | |
return False | |
def parse_financial_data(self, content): | |
"""Parse markdown content into structured data""" | |
try: | |
data = {} | |
current_section = "" | |
current_table = [] | |
headers = None | |
for line in content.split('\n'): | |
if line.startswith('#'): | |
if current_table and headers: | |
data[current_section] = self.process_table(headers, current_table) | |
current_section = line.strip('# ') | |
current_table = [] | |
headers = None | |
elif '|' in line: | |
if '-|-' not in line: | |
row = [cell.strip() for cell in line.split('|')[1:-1]] | |
if not headers: | |
headers = row | |
else: | |
current_table.append(row) | |
if current_table and headers: | |
data[current_section] = self.process_table(headers, current_table) | |
return data | |
except Exception as e: | |
print(f"Error parsing financial data: {str(e)}") | |
return {} | |
def process_table(self, headers, rows): | |
"""Process table data into structured format""" | |
try: | |
processed_data = {} | |
for row in rows: | |
if len(row) == len(headers): | |
item_name = row[0].strip('*').strip() | |
processed_data[item_name] = {} | |
for i, value in enumerate(row[1:], 1): | |
processed_data[item_name][headers[i]] = self.clean_number(value) | |
return processed_data | |
except Exception as e: | |
print(f"Error processing table: {str(e)}") | |
return {} | |
def get_nested_value(self, data, section, key, year): | |
"""Safely get nested dictionary value""" | |
try: | |
return data.get(section, {}).get(key, {}).get(str(year), 0) | |
except: | |
return 0 | |
def calculate_metrics(self, income_data, balance_data): | |
"""Calculate all CFI standard financial metrics""" | |
try: | |
metrics = {} | |
# 1. Gross Profit Margin Ratio | |
# 1. Gross Profit Margin | |
revenue = self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2025") | |
cogs = self.get_nested_value(income_data, "Cost and Gross Profit", "Cost of Goods Sold", "2025") | |
gross_profit = revenue - cogs | |
metrics['gross_profit_margin'] = (gross_profit / revenue) * 100 if revenue != 0 else 0 | |
# 2. Current Ratio | |
current_assets = self.get_nested_value(balance_data, "Key Totals", "Total_Current_Assets", "2025") | |
current_liabilities = self.get_nested_value(balance_data, "Key Totals", "Total_Current_Liabilities", "2025") | |
metrics['current_ratio'] = current_assets / current_liabilities if current_liabilities != 0 else 0 | |
# 3. Debt Ratio | |
total_liabilities = self.get_nested_value(balance_data, "Key Totals", "Total_Liabilities", "2025") | |
total_assets = self.get_nested_value(balance_data, "Key Totals", "Total_Assets", "2025") | |
metrics['debt_ratio'] = (total_liabilities / total_assets) * 100 if total_assets != 0 else 0 | |
# 4. Sustainable Growth Rate (SGR) | |
net_income = self.get_nested_value(income_data, "Profit Summary", "Net Earnings", "2025") | |
equity = self.get_nested_value(balance_data, "Key Totals", "Total_Shareholders_Equity", "2025") | |
dividends = self.get_nested_value(income_data, "Profit Summary", "Dividends Paid", "2025") | |
roe = (net_income / equity) * 100 if equity != 0 else 0 | |
retention_ratio = (net_income - dividends) / net_income if net_income != 0 else 0 | |
metrics['sgr'] = roe * retention_ratio / 100 if roe != 0 else 0 | |
# 5. Accounts Receivable Turnover | |
accounts_receivable = self.get_nested_value(balance_data, "Balance Sheet Data 2021-2025", "Accounts_Receivable", "2025") | |
metrics['ar_turnover'] = revenue / accounts_receivable if accounts_receivable != 0 else 0 | |
# 6. Return on Equity (ROE) | |
metrics['roe'] = roe | |
# 7. Net Profit Margin | |
metrics['net_profit_margin'] = (net_income / revenue) * 100 if revenue != 0 else 0 | |
# 8. Retained Earnings Ratio | |
retained_earnings = self.get_nested_value(balance_data, "Balance Sheet Data 2021-2025", "Retained_Earnings", "2025") | |
metrics['retained_earnings_ratio'] = (retained_earnings / total_assets) * 100 if total_assets != 0 else 0 | |
# 9. Revenue Growth (YoY) | |
revenue_2024 = self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2024") | |
metrics['revenue_growth'] = ((revenue / revenue_2024) - 1) * 100 if revenue_2024 != 0 else 0 | |
# 10. Revenue CAGR (2021-2025) | |
revenue_2021 = self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2021") | |
metrics['revenue_cagr'] = ((revenue / revenue_2021) ** (1 / 4) - 1) * 100 if revenue_2021 != 0 else 0 | |
return metrics | |
except Exception as e: | |
print(f"Error calculating metrics: {e}") | |
return {} | |
def analyze_financials(self, balance_sheet_path, income_statement_path): | |
try: | |
# Validate markdown files | |
if not self.is_valid_markdown(balance_sheet_path): | |
return "Invalid Balance Sheet file format. Please upload a valid Markdown file." | |
if not self.is_valid_markdown(income_statement_path): | |
return "Invalid Income Statement file format. Please upload a valid Markdown file." | |
# Read and parse files | |
with open(balance_sheet_path, 'r') as f: | |
balance_content = f.read() | |
with open(income_statement_path, 'r') as f: | |
income_content = f.read() | |
balance_data = self.parse_financial_data(balance_content) | |
income_data = self.parse_financial_data(income_content) | |
# Calculate metrics | |
metrics = self.calculate_metrics(income_data, balance_data) | |
# Generate analysis | |
return self.generate_analysis(metrics) | |
except Exception as e: | |
return f"Error analyzing financials: {e}" | |
def generate_analysis(self, metrics): | |
"""Generate comprehensive analysis""" | |
try: | |
prompt = f"""[INST] As a financial analyst, provide a comprehensive analysis based on these metrics: | |
1. Profitability: | |
- Gross Profit Margin: {metrics.get('gross_profit_margin', 0):.2f}% | |
- Net Profit Margin: {metrics.get('net_profit_margin', 0):.2f}% | |
- Return on Equity: {metrics.get('roe', 0):.2f}% | |
2. Liquidity & Efficiency: | |
- Current Ratio: {metrics.get('current_ratio', 0):.2f} | |
- Accounts Receivable Turnover: {metrics.get('ar_turnover', 0):.2f} | |
3. Financial Structure: | |
- Debt Ratio: {metrics.get('debt_ratio', 0):.2f}% | |
- Retained Earnings Ratio: {metrics.get('retained_earnings_ratio', 0):.2f}% | |
4. Growth: | |
- Sustainable Growth Rate: {metrics.get('sgr', 0):.2f}% | |
- Revenue Growth (YoY): {metrics.get('revenue_growth', 0):.2f}% | |
Provide: | |
1. Overall financial health assessment | |
2. Key strengths and concerns | |
3. Operational efficiency analysis | |
4. Specific recommendations for improvement | |
[/INST]""" | |
inputs = self.llama_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048) | |
outputs = self.llama_model.generate( | |
inputs["input_ids"], | |
max_new_tokens=1024, | |
min_new_tokens=200, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.2, | |
length_penalty=1.5 | |
) | |
analysis = self.llama_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
if len(analysis.split()) < 100: | |
return self.generate_fallback_analysis(metrics) | |
return analysis | |
except Exception as e: | |
print(f"Error generating analysis: {str(e)}") | |
return self.generate_fallback_analysis(metrics) | |
def generate_fallback_analysis(self, metrics): | |
"""Generate basic analysis when model fails""" | |
try: | |
analysis = f"""Financial Analysis Summary: | |
1. Profitability Assessment: | |
- Gross Profit Margin: {metrics.get('gross_profit_margin', 0):.2f}% | |
({self.interpret_metric('gross_profit_margin', metrics.get('gross_profit_margin', 0))}) | |
- Net Profit Margin: {metrics.get('net_profit_margin', 0):.2f}% | |
({self.interpret_metric('net_profit_margin', metrics.get('net_profit_margin', 0))}) | |
- Return on Equity: {metrics.get('roe', 0):.2f}% | |
({self.interpret_metric('roe', metrics.get('roe', 0))}) | |
2. Liquidity & Efficiency Analysis: | |
- Current Ratio: {metrics.get('current_ratio', 0):.2f} | |
({self.interpret_metric('current_ratio', metrics.get('current_ratio', 0))}) | |
- AR Turnover: {metrics.get('ar_turnover', 0):.2f} | |
({self.interpret_metric('ar_turnover', metrics.get('ar_turnover', 0))}) | |
3. Financial Structure: | |
- Debt Ratio: {metrics.get('debt_ratio', 0):.2f}% | |
({self.interpret_metric('debt_ratio', metrics.get('debt_ratio', 0))}) | |
- Retained Earnings Ratio: {metrics.get('retained_earnings_ratio', 0):.2f}% | |
({self.interpret_metric('retained_earnings_ratio', metrics.get('retained_earnings_ratio', 0))}) | |
4. Growth & Sustainability: | |
- Sustainable Growth Rate: {metrics.get('sgr', 0):.2f}% | |
({self.interpret_metric('sgr', metrics.get('sgr', 0))}) | |
- Revenue Growth: {metrics.get('revenue_growth', 0):.2f}% | |
({self.interpret_metric('revenue_growth', metrics.get('revenue_growth', 0))}) | |
{self.generate_recommendations(metrics)}""" | |
return analysis | |
except Exception as e: | |
return f"Error generating fallback analysis: {str(e)}" | |
def interpret_metric(self, metric_name, value): | |
"""Interpret individual metrics based on CFI standards""" | |
interpretations = { | |
'gross_profit_margin': lambda x: 'Strong' if x > 40 else 'Adequate' if x > 30 else 'Needs improvement', | |
'current_ratio': lambda x: 'Strong' if x > 2 else 'Adequate' if x > 1 else 'Concerning', | |
'debt_ratio': lambda x: 'Conservative' if x < 40 else 'Moderate' if x < 60 else 'High risk', | |
'ar_turnover': lambda x: 'Excellent' if x > 8 else 'Good' if x > 4 else 'Needs improvement', | |
'roe': lambda x: 'Strong' if x > 15 else 'Adequate' if x > 10 else 'Below target', | |
'net_profit_margin': lambda x: 'Strong' if x > 10 else 'Adequate' if x > 5 else 'Needs improvement', | |
'retained_earnings_ratio': lambda x: 'Strong' if x > 30 else 'Adequate' if x > 15 else 'Low retention', | |
'sgr': lambda x: 'Strong' if x > 10 else 'Moderate' if x > 5 else 'Limited growth potential', | |
'revenue_growth': lambda x: 'Strong' if x > 10 else 'Moderate' if x > 5 else 'Below industry average' | |
} | |
try: | |
return interpretations.get(metric_name, lambda x: 'No interpretation')(value) | |
except: | |
return 'Unable to interpret' | |
def generate_recommendations(self, metrics): | |
"""Generate specific recommendations based on metrics""" | |
recommendations = [] | |
if metrics.get('gross_profit_margin', 0) < 30: | |
recommendations.append("- Review pricing strategy and cost structure to improve gross margins") | |
if metrics.get('current_ratio', 0) < 1.5: | |
recommendations.append("- Strengthen working capital management to improve liquidity") | |
if metrics.get('debt_ratio', 0) > 60: | |
recommendations.append("- Consider debt reduction strategies to improve financial flexibility") | |
if metrics.get('ar_turnover', 0) < 4: | |
recommendations.append("- Improve accounts receivable collection practices") | |
if metrics.get('roe', 0) < 10: | |
recommendations.append("- Focus on improving operational efficiency to enhance returns") | |
if metrics.get('revenue_growth', 0) < 5: | |
recommendations.append("- Develop strategies to accelerate revenue growth") | |
recommendations.append("- Consider strategic acquisitions or new market entry") | |
return "Key Recommendations:\n" + "\n".join(recommendations) | |
def analyze_financials(self, balance_sheet_file, income_stmt_file): | |
"""Main analysis function""" | |
try: | |
# Validate input files | |
if not (self.is_valid_markdown(balance_sheet_file) and self.is_valid_markdown(income_stmt_file)): | |
return "Error: One or both files are invalid or not in Markdown format." | |
# Read files | |
with open(balance_sheet_file, 'r') as f: | |
balance_sheet = f.read() | |
with open(income_stmt_file, 'r') as f: | |
income_stmt = f.read() | |
# Process financial data | |
income_data = self.parse_financial_data(income_stmt) | |
balance_data = self.parse_financial_data(balance_sheet) | |
# Calculate metrics | |
metrics = self.calculate_metrics(income_data, balance_data) | |
self.last_metrics = metrics | |
# Generate analysis | |
analysis = self.generate_analysis(metrics) | |
# Prepare final results | |
results = { | |
"Financial Analysis": { | |
"Key Metrics": { | |
"Profitability": { | |
"Gross Profit Margin": f"{metrics['gross_profit_margin']:.2f}%", | |
"Net Profit Margin": f"{metrics['net_profit_margin']:.2f}%", | |
"Return on Equity": f"{metrics['roe']:.2f}%" | |
}, | |
"Liquidity": { | |
"Current Ratio": f"{metrics['current_ratio']:.2f}", | |
"Accounts Receivable Turnover": f"{metrics['ar_turnover']:.2f}" | |
}, | |
"Solvency": { | |
"Debt Ratio": f"{metrics['debt_ratio']:.2f}%", | |
"Retained Earnings Ratio": f"{metrics['retained_earnings_ratio']:.2f}%" | |
}, | |
"Growth": { | |
"Sustainable Growth Rate": f"{metrics['sgr']:.2f}%", | |
"Revenue Growth (YoY)": f"{metrics['revenue_growth']:.2f}%" | |
} | |
}, | |
"Analysis": analysis, | |
"Analysis Period": "2021-2025", | |
"Note": "Analysis based on CFI standards" | |
} | |
} | |
return json.dumps(results, indent=2) | |
except Exception as e: | |
return f"Error in analysis: {str(e)}\n\nDetails: {type(e).__name__}" | |
def fine_tune_models(self, train_texts, train_labels, epochs=3): | |
"""Fine-tune the model with custom data""" | |
try: | |
# Prepare dataset | |
train_dataset = FinancialDataset(train_texts, train_labels, self.llama_tokenizer) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./financial_model_tuned", | |
num_train_epochs=epochs, | |
per_device_train_batch_size=4, | |
logging_dir="./logs", | |
logging_steps=10, | |
save_steps=50, | |
eval_steps=50, | |
learning_rate=2e-5, | |
weight_decay=0.01, | |
warmup_steps=500 | |
) | |
# Initialize trainer | |
trainer = Trainer( | |
model=self.llama_model, | |
args=training_args, | |
train_dataset=train_dataset | |
) | |
# Fine-tune the model | |
trainer.train() | |
# Save the fine-tuned model | |
self.llama_model.save_pretrained("./financial_model_tuned") | |
self.llama_tokenizer.save_pretrained("./financial_model_tuned") | |
print("Fine-tuning completed successfully!") | |
except Exception as e: | |
print(f"Error in fine-tuning: {str(e)}") | |
def create_interface(): | |
analyzer = FinancialAnalyzer() | |
iface = gr.Interface( | |
fn=analyzer.analyze_financials, | |
inputs=[ | |
gr.File(label="Balance Sheet (Markdown)", type="filepath"), | |
gr.File(label="Income Statement (Markdown)", type="filepath") | |
], | |
outputs=gr.Textbox(label="Analysis Results", lines=25), | |
title="AI Financial Statement Analyzer", | |
description="""Upload financial statements in Markdown format for AI-powered analysis. | |
Analysis is based on Corporate Finance Institute (CFI) standards.""", | |
cache_examples=False | |
) | |
return iface | |
if __name__ == "__main__": | |
iface = create_interface() | |
iface.launch() |