File size: 7,213 Bytes
864f28a
a1ef945
 
0ff54a0
a1ef945
35acd3c
 
0ff54a0
ceb9625
 
 
 
 
6e9bd28
0ff54a0
6e9bd28
 
 
35acd3c
ceb9625
 
 
57061b5
 
 
 
 
ceb9625
57061b5
 
 
 
ceb9625
0ff54a0
 
35acd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37a163f
 
35acd3c
 
 
 
0ff54a0
37a163f
0ff54a0
35acd3c
 
0ff54a0
35acd3c
 
0ff54a0
35acd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff54a0
 
 
35acd3c
 
 
 
 
0ff54a0
35acd3c
0ff54a0
35acd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ef945
37a163f
35acd3c
a1ef945
0ff54a0
 
a1ef945
35acd3c
 
 
 
a1ef945
0ff54a0
 
 
 
a1ef945
0ff54a0
 
 
 
35acd3c
 
37a163f
0ff54a0
35acd3c
0ff54a0
 
35acd3c
37a163f
a1ef945
 
35acd3c
 
 
 
37a163f
35acd3c
 
 
 
a1ef945
37a163f
0ff54a0
35acd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ef945
 
 
 
 
 
37a163f
a1ef945
 
 
35acd3c
0ff54a0
a1ef945
35acd3c
a1ef945
 
 
37a163f
a1ef945
 
 
 
 
 
35acd3c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os 
import gradio as gr
import pandas as pd
from transformers import pipeline
import torch
import sys
import logging
import io
from huggingface_hub import login
from dotenv import load_dotenv

# Load environment variables
load_dotenv()
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Get token securely from environment variable
hf_token = os.getenv('HUGGINGFACE_TOKEN')



# Check if the token is available
if hf_token:
    # Log in to Hugging Face Hub
    login(token=hf_token)
    print("Successfully logged in to Hugging Face Hub.")
else:
    print("HF_TOKEN environment variable not found. Please set it in the Space settings.")


class FinancialAnalyzer:
    def __init__(self):
        """Initialize models with error handling"""
        try:
            # 1. Llama 2 for strategic analysis
            self.strategic_analyzer = pipeline(
                "text-generation",
                model="meta-llama/Llama-2-7b-chat-hf",
                device_map="auto"
            )
            logger.info("Llama 2 initialized successfully")
            
            # 2. FinBERT for financial sentiment
            self.financial_analyzer = pipeline(
                "text-classification",
                model="ProsusAI/finbert",
                return_all_scores=True
            )
            logger.info("FinBERT initialized successfully")
            
            # 3. Falcon for recommendations
            self.recommendation_generator = pipeline(
                "text-generation",
                model="tiiuae/falcon-7b-instruct",
                device_map="auto"
            )
            logger.info("Falcon initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing models: {str(e)}")
            raise

    def read_csv_file(self, file_obj):
        """Safely read CSV file"""
        try:
            if file_obj is None:
                raise ValueError("No file provided")
            return pd.read_csv(file_obj)
        except Exception as e:
            logger.error(f"Error reading CSV file: {str(e)}")
            raise

    def generate_strategic_analysis(self, financial_data):
        """Generate strategic analysis using Llama 2"""
        try:
            prompt = f"""[INST] As a senior financial analyst, analyze these financial statements:

            Financial Data:
            {financial_data}

            Provide:
            1. Business Health Assessment
            2. Key Strategic Insights
            3. Market Position Analysis
            4. Growth Opportunities
            5. Risk Factors [/INST]"""
            
            response = self.strategic_analyzer(
                prompt,
                max_length=1000,
                temperature=0.7
            )
            return response[0]['generated_text']
        except Exception as e:
            logger.error(f"Error in strategic analysis: {str(e)}")
            return "Error generating strategic analysis"
    
    def analyze_sentiment(self, text):
        """Analyze financial sentiment using FinBERT"""
        try:
            return self.financial_analyzer(text)
        except Exception as e:
            logger.error(f"Error in sentiment analysis: {str(e)}")
            return [{"label": "error", "score": 1.0}]
    
    def generate_recommendations(self, analysis):
        """Generate recommendations using Falcon"""
        try:
            prompt = f"""Based on this financial analysis:
            {analysis}
            
            Provide specific, actionable recommendations covering:
            1. Strategic Initiatives
            2. Operational Improvements
            3. Financial Management
            4. Risk Mitigation
            5. Growth Strategy"""
            
            response = self.recommendation_generator(
                prompt,
                max_length=800,
                temperature=0.6
            )
            return response[0]['generated_text']
        except Exception as e:
            logger.error(f"Error generating recommendations: {str(e)}")
            return "Error generating recommendations"

def analyze_financial_statements(income_statement, balance_sheet):
    """Main analysis function with error handling"""
    try:
        # Initialize analyzer
        analyzer = FinancialAnalyzer()
        
        # Read CSV files safely
        logger.info("Reading input files...")
        income_df = analyzer.read_csv_file(income_statement)
        balance_df = analyzer.read_csv_file(balance_sheet)
        
        # Prepare financial data
        financial_data = f"""
        Income Statement Summary:
        {income_df.to_string()}
        
        Balance Sheet Summary:
        {balance_df.to_string()}
        """
        
        # Generate analyses
        logger.info("Generating analysis...")
        strategic_analysis = analyzer.generate_strategic_analysis(financial_data)
        sentiment = analyzer.analyze_sentiment(strategic_analysis)
        recommendations = analyzer.generate_recommendations(strategic_analysis)
        
        # Format output
        logger.info("Formatting results...")
        return format_results(strategic_analysis, sentiment, recommendations)
        
    except Exception as e:
        logger.error(f"Error in analysis: {str(e)}")
        return f"""Error analyzing files: {str(e)}
        
Please check:
1. Files are in correct CSV format
2. Files are not corrupted
3. Files contain the expected data

If the problem persists, try uploading the files again."""

def format_results(analysis, sentiment, recommendations):
    """Format analysis results"""
    try:
        output = "# Financial Analysis Report\n\n"
        
        # Strategic Analysis
        output += "## Strategic Analysis\n\n"
        output += analysis + "\n\n"
        
        # Sentiment Analysis
        output += "## Market Sentiment\n\n"
        for score in sentiment[0]:
            output += f"- {score['label']}: {score['score']:.2%}\n"
        output += "\n"
        
        # Recommendations
        output += "## Strategic Recommendations\n\n"
        output += recommendations
        
        return output
    except Exception as e:
        logger.error(f"Error formatting results: {str(e)}")
        return "Error formatting analysis results"

# Create Gradio interface
iface = gr.Interface(
    fn=analyze_financial_statements,
    inputs=[
        gr.File(label="Income Statement (CSV)"),
        gr.File(label="Balance Sheet (CSV)")
    ],
    outputs=gr.Markdown(),
    title="AI-Powered Financial Statement Analysis",
    description="""Upload your financial statements for comprehensive analysis using:
    - Llama 2: Strategic Analysis
    - FinBERT: Financial Sentiment Analysis
    - Falcon: Strategic Recommendations""",
    examples=[
        [
            "OFINTECH-Income Statement-template.csv",
            "OFINTECH Balance Sheet template.csv"
        ]
    ]
)

# Launch the interface
if __name__ == "__main__":
    try:
        iface.launch()
    except Exception as e:
        logger.error(f"Error launching application: {str(e)}")
        sys.exit(1)