Spaces:
Sleeping
Sleeping
Delete app1.py
Browse files
app1.py
DELETED
@@ -1,311 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import pandas as pd
|
4 |
-
import torch
|
5 |
-
import logging
|
6 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
-
import gc
|
8 |
-
|
9 |
-
# Setup logging
|
10 |
-
logging.basicConfig(
|
11 |
-
level=logging.INFO,
|
12 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
13 |
-
)
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
|
16 |
-
# Device configuration
|
17 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
-
logger.info(f"Using device: {DEVICE}")
|
19 |
-
|
20 |
-
def clear_gpu_memory():
|
21 |
-
"""Utility function to clear GPU memory"""
|
22 |
-
if DEVICE == "cuda":
|
23 |
-
torch.cuda.empty_cache()
|
24 |
-
gc.collect()
|
25 |
-
|
26 |
-
class ModelManager:
|
27 |
-
"""Handles model loading and inference"""
|
28 |
-
|
29 |
-
def __init__(self):
|
30 |
-
self.device = DEVICE
|
31 |
-
self.models = {}
|
32 |
-
self.tokenizers = {}
|
33 |
-
|
34 |
-
def load_model(self, model_name, model_type="sentiment"):
|
35 |
-
"""Load model and tokenizer"""
|
36 |
-
try:
|
37 |
-
if model_name not in self.models:
|
38 |
-
if model_type == "sentiment":
|
39 |
-
self.tokenizers[model_name] = AutoTokenizer.from_pretrained(model_name)
|
40 |
-
self.models[model_name] = AutoModelForSequenceClassification.from_pretrained(
|
41 |
-
model_name,
|
42 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
43 |
-
).to(self.device)
|
44 |
-
else:
|
45 |
-
self.models[model_name] = pipeline(
|
46 |
-
"text-generation",
|
47 |
-
model=model_name,
|
48 |
-
device_map="auto" if self.device == "cuda" else None,
|
49 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
50 |
-
)
|
51 |
-
logger.info(f"Loaded model: {model_name}")
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Error loading model {model_name}: {str(e)}")
|
54 |
-
raise
|
55 |
-
|
56 |
-
def unload_model(self, model_name):
|
57 |
-
"""Unload model and tokenizer"""
|
58 |
-
try:
|
59 |
-
if model_name in self.models:
|
60 |
-
del self.models[model_name]
|
61 |
-
if model_name in self.tokenizers:
|
62 |
-
del self.tokenizers[model_name]
|
63 |
-
clear_gpu_memory()
|
64 |
-
logger.info(f"Unloaded model: {model_name}")
|
65 |
-
except Exception as e:
|
66 |
-
logger.error(f"Error unloading model {model_name}: {str(e)}")
|
67 |
-
|
68 |
-
def get_model(self, model_name):
|
69 |
-
"""Get loaded model"""
|
70 |
-
return self.models.get(model_name)
|
71 |
-
|
72 |
-
def get_tokenizer(self, model_name):
|
73 |
-
"""Get loaded tokenizer"""
|
74 |
-
return self.tokenizers.get(model_name)
|
75 |
-
|
76 |
-
class FinancialAnalyzer:
|
77 |
-
"""Main analyzer class for financial statements"""
|
78 |
-
|
79 |
-
def __init__(self):
|
80 |
-
self.model_manager = ModelManager()
|
81 |
-
self.models = {
|
82 |
-
"sentiment": "ProsusAI/finbert",
|
83 |
-
"analysis": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
84 |
-
"recommendation": "tiiuae/falcon-rw-1b"
|
85 |
-
}
|
86 |
-
|
87 |
-
# Load sentiment model at initialization
|
88 |
-
try:
|
89 |
-
self.model_manager.load_model(self.models["sentiment"], "sentiment")
|
90 |
-
except Exception as e:
|
91 |
-
logger.error(f"Failed to initialize sentiment model: {str(e)}")
|
92 |
-
raise
|
93 |
-
|
94 |
-
def read_csv(self, file_obj):
|
95 |
-
"""Read and validate CSV file"""
|
96 |
-
try:
|
97 |
-
if file_obj is None:
|
98 |
-
raise ValueError("No file provided")
|
99 |
-
|
100 |
-
df = pd.read_csv(file_obj)
|
101 |
-
|
102 |
-
if df.empty:
|
103 |
-
raise ValueError("Empty CSV file")
|
104 |
-
|
105 |
-
return df.describe()
|
106 |
-
except Exception as e:
|
107 |
-
logger.error(f"Error reading CSV: {str(e)}")
|
108 |
-
raise
|
109 |
-
|
110 |
-
|
111 |
-
def analyze_sentiment(self, text):
|
112 |
-
"""Analyze sentiment using FinBERT"""
|
113 |
-
try:
|
114 |
-
model_name = self.models["sentiment"]
|
115 |
-
model = self.model_manager.get_model(model_name)
|
116 |
-
tokenizer = self.model_manager.get_tokenizer(model_name)
|
117 |
-
|
118 |
-
inputs = tokenizer(
|
119 |
-
text,
|
120 |
-
return_tensors="pt",
|
121 |
-
truncation=True,
|
122 |
-
max_length=512,
|
123 |
-
padding=True
|
124 |
-
).to(DEVICE)
|
125 |
-
|
126 |
-
with torch.no_grad():
|
127 |
-
outputs = model(**inputs)
|
128 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
129 |
-
|
130 |
-
labels = ['negative', 'neutral', 'positive']
|
131 |
-
scores = probabilities[0].cpu().tolist()
|
132 |
-
|
133 |
-
results = [
|
134 |
-
{'label': label, 'score': score}
|
135 |
-
for label, score in zip(labels, scores)
|
136 |
-
]
|
137 |
-
|
138 |
-
return [results]
|
139 |
-
except Exception as e:
|
140 |
-
logger.error(f"Sentiment analysis error: {str(e)}")
|
141 |
-
return [{"label": "error", "score": 1.0}]
|
142 |
-
|
143 |
-
def generate_analysis(self, financial_data):
|
144 |
-
"""Generate strategic analysis"""
|
145 |
-
try:
|
146 |
-
model_name = self.models["analysis"]
|
147 |
-
self.model_manager.load_model(model_name, "generation")
|
148 |
-
|
149 |
-
prompt = f"""[INST] Analyze these financial statements:
|
150 |
-
{financial_data}
|
151 |
-
Provide:
|
152 |
-
1. Business Health Assessment
|
153 |
-
2. Key Strategic Insights
|
154 |
-
3. Market Position
|
155 |
-
4. Growth Opportunities
|
156 |
-
5. Risk Factors [/INST]"""
|
157 |
-
|
158 |
-
response = self.model_manager.get_model(model_name)(
|
159 |
-
prompt,
|
160 |
-
max_length=1000,
|
161 |
-
temperature=0.7,
|
162 |
-
do_sample=True,
|
163 |
-
num_return_sequences=1,
|
164 |
-
truncation=True
|
165 |
-
)
|
166 |
-
|
167 |
-
return response[0]['generated_text']
|
168 |
-
except Exception as e:
|
169 |
-
logger.error(f"Analysis generation error: {str(e)}")
|
170 |
-
return "Error in analysis generation"
|
171 |
-
finally:
|
172 |
-
self.model_manager.unload_model(model_name)
|
173 |
-
|
174 |
-
def generate_recommendations(self, analysis):
|
175 |
-
"""Generate recommendations"""
|
176 |
-
try:
|
177 |
-
model_name = self.models["recommendation"]
|
178 |
-
self.model_manager.load_model(model_name, "generation")
|
179 |
-
|
180 |
-
prompt = f"""Based on this analysis:
|
181 |
-
{analysis}
|
182 |
-
|
183 |
-
Provide actionable recommendations for:
|
184 |
-
1. Strategic Initiatives
|
185 |
-
2. Operational Improvements
|
186 |
-
3. Financial Management
|
187 |
-
4. Risk Mitigation
|
188 |
-
5. Growth Strategy"""
|
189 |
-
|
190 |
-
response = self.model_manager.get_model(model_name)(
|
191 |
-
prompt,
|
192 |
-
max_length=1000,
|
193 |
-
temperature=0.6,
|
194 |
-
do_sample=True,
|
195 |
-
num_return_sequences=1,
|
196 |
-
truncation=True
|
197 |
-
)
|
198 |
-
|
199 |
-
return response[0]['generated_text']
|
200 |
-
except Exception as e:
|
201 |
-
logger.error(f"Recommendations generation error: {str(e)}")
|
202 |
-
return "Error generating recommendations"
|
203 |
-
finally:
|
204 |
-
self.model_manager.unload_model(model_name)
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
def analyze_financial_statements(income_statement, balance_sheet):
|
209 |
-
"""Main analysis function"""
|
210 |
-
try:
|
211 |
-
analyzer = FinancialAnalyzer()
|
212 |
-
|
213 |
-
# Validate inputs
|
214 |
-
if not income_statement or not balance_sheet:
|
215 |
-
return "Error: Please provide both income statement and balance sheet files"
|
216 |
-
|
217 |
-
# Process financial statements
|
218 |
-
logger.info("Processing financial statements...")
|
219 |
-
income_summary = analyzer.read_csv(income_statement)
|
220 |
-
balance_summary = analyzer.read_csv(balance_sheet)
|
221 |
-
|
222 |
-
financial_data = f"""
|
223 |
-
Income Statement Summary:
|
224 |
-
{income_summary.to_string()}
|
225 |
-
|
226 |
-
Balance Sheet Summary:
|
227 |
-
{balance_summary.to_string()}
|
228 |
-
"""
|
229 |
-
|
230 |
-
# Generate analysis
|
231 |
-
logger.info("Generating analysis...")
|
232 |
-
analysis = analyzer.generate_analysis(financial_data)
|
233 |
-
|
234 |
-
# Analyze sentiment
|
235 |
-
logger.info("Analyzing sentiment...")
|
236 |
-
sentiment = analyzer.analyze_sentiment(analysis)
|
237 |
-
|
238 |
-
# Generate recommendations
|
239 |
-
logger.info("Generating recommendations...")
|
240 |
-
recommendations = analyzer.generate_recommendations(analysis)
|
241 |
-
|
242 |
-
# Format results
|
243 |
-
return format_results(analysis, sentiment, recommendations)
|
244 |
-
|
245 |
-
except Exception as e:
|
246 |
-
logger.error(f"Analysis error: {str(e)}")
|
247 |
-
return f"""Analysis Error:
|
248 |
-
|
249 |
-
{str(e)}
|
250 |
-
|
251 |
-
Please verify:
|
252 |
-
1. Files are valid CSV format
|
253 |
-
2. Files contain required financial data
|
254 |
-
3. File size is within limits"""
|
255 |
-
|
256 |
-
def format_results(analysis, sentiment, recommendations):
|
257 |
-
"""Format analysis results"""
|
258 |
-
try:
|
259 |
-
if not isinstance(analysis, str) or not isinstance(recommendations, str):
|
260 |
-
raise ValueError("Invalid input types")
|
261 |
-
|
262 |
-
output = [
|
263 |
-
"# Financial Analysis Report\n\n",
|
264 |
-
"## Strategic Analysis\n\n",
|
265 |
-
f"{analysis.strip()}\n\n",
|
266 |
-
"## Market Sentiment\n\n"
|
267 |
-
]
|
268 |
-
|
269 |
-
if isinstance(sentiment, list) and sentiment:
|
270 |
-
for score in sentiment[0]:
|
271 |
-
if isinstance(score, dict) and 'label' in score and 'score' in score:
|
272 |
-
output.append(f"- {score['label']}: {score['score']:.2%}\n")
|
273 |
-
output.append("\n")
|
274 |
-
|
275 |
-
output.append("## Strategic Recommendations\n\n")
|
276 |
-
output.append(f"{recommendations.strip()}")
|
277 |
-
|
278 |
-
return "".join(output)
|
279 |
-
except Exception as e:
|
280 |
-
logger.error(f"Formatting error: {str(e)}")
|
281 |
-
return "Error formatting results"
|
282 |
-
|
283 |
-
# Create Gradio interface
|
284 |
-
iface = gr.Interface(
|
285 |
-
fn=analyze_financial_statements,
|
286 |
-
inputs=[
|
287 |
-
gr.File(label="Income Statement (CSV)"),
|
288 |
-
gr.File(label="Balance Sheet (CSV)")
|
289 |
-
],
|
290 |
-
outputs=gr.Markdown(),
|
291 |
-
title="Financial Statement Analyzer",
|
292 |
-
description="""Upload financial statements for AI-powered analysis:
|
293 |
-
- Strategic Analysis (TinyLlama)
|
294 |
-
- Sentiment Analysis (FinBERT)
|
295 |
-
- Strategic Recommendations (Falcon)
|
296 |
-
|
297 |
-
Note: Please ensure files are in CSV format.""",
|
298 |
-
flagging_mode="never"
|
299 |
-
)
|
300 |
-
|
301 |
-
if __name__ == "__main__":
|
302 |
-
try:
|
303 |
-
iface.queue()
|
304 |
-
iface.launch(
|
305 |
-
share=False,
|
306 |
-
server_name="0.0.0.0",
|
307 |
-
server_port=7860
|
308 |
-
)
|
309 |
-
except Exception as e:
|
310 |
-
logger.error(f"Launch error: {str(e)}")
|
311 |
-
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|