Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,11 @@ import gradio as gr
|
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
import logging
|
6 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
import gc
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(
|
@@ -17,12 +20,34 @@ logger = logging.getLogger(__name__)
|
|
17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
logger.info(f"Using device: {DEVICE}")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def clear_gpu_memory():
|
21 |
"""Utility function to clear GPU memory"""
|
22 |
if DEVICE == "cuda":
|
23 |
torch.cuda.empty_cache()
|
24 |
gc.collect()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class ModelManager:
|
27 |
"""Handles model loading and inference"""
|
28 |
|
@@ -30,29 +55,52 @@ class ModelManager:
|
|
30 |
self.device = DEVICE
|
31 |
self.models = {}
|
32 |
self.tokenizers = {}
|
|
|
|
|
33 |
|
34 |
-
def load_model(self, model_name, model_type="sentiment"):
|
35 |
-
"""Load model and tokenizer"""
|
36 |
try:
|
37 |
-
if model_name
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
logger.error(f"Error loading model {model_name}: {str(e)}")
|
54 |
raise
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def unload_model(self, model_name):
|
57 |
"""Unload model and tokenizer"""
|
58 |
try:
|
@@ -92,29 +140,53 @@ class FinancialAnalyzer:
|
|
92 |
raise
|
93 |
|
94 |
def read_csv(self, file_obj):
|
95 |
-
"""Read and validate CSV file"""
|
96 |
try:
|
97 |
if file_obj is None:
|
98 |
raise ValueError("No file provided")
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
if df.empty:
|
103 |
raise ValueError("Empty CSV file")
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
except Exception as e:
|
107 |
logger.error(f"Error reading CSV: {str(e)}")
|
108 |
raise
|
109 |
|
110 |
-
|
111 |
def analyze_sentiment(self, text):
|
112 |
-
"""Analyze sentiment using FinBERT"""
|
113 |
try:
|
114 |
model_name = self.models["sentiment"]
|
115 |
model = self.model_manager.get_model(model_name)
|
116 |
tokenizer = self.model_manager.get_tokenizer(model_name)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
inputs = tokenizer(
|
119 |
text,
|
120 |
return_tensors="pt",
|
@@ -123,10 +195,12 @@ class FinancialAnalyzer:
|
|
123 |
padding=True
|
124 |
).to(DEVICE)
|
125 |
|
|
|
126 |
with torch.no_grad():
|
127 |
outputs = model(**inputs)
|
128 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
129 |
|
|
|
130 |
labels = ['negative', 'neutral', 'positive']
|
131 |
scores = probabilities[0].cpu().tolist()
|
132 |
|
@@ -135,79 +209,181 @@ class FinancialAnalyzer:
|
|
135 |
for label, score in zip(labels, scores)
|
136 |
]
|
137 |
|
|
|
138 |
return [results]
|
|
|
139 |
except Exception as e:
|
140 |
logger.error(f"Sentiment analysis error: {str(e)}")
|
141 |
return [{"label": "error", "score": 1.0}]
|
142 |
|
143 |
def generate_analysis(self, financial_data):
|
144 |
-
"""Generate strategic analysis"""
|
145 |
try:
|
146 |
model_name = self.models["analysis"]
|
147 |
self.model_manager.load_model(model_name, "generation")
|
148 |
|
149 |
-
prompt = f"""[INST]
|
|
|
|
|
150 |
{financial_data}
|
151 |
-
|
|
|
|
|
152 |
1. Business Health Assessment
|
|
|
|
|
|
|
|
|
153 |
2. Key Strategic Insights
|
|
|
|
|
|
|
|
|
154 |
3. Market Position
|
|
|
|
|
|
|
|
|
155 |
4. Growth Opportunities
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
response = self.model_manager.get_model(model_name)(
|
159 |
prompt,
|
160 |
-
max_length=
|
|
|
161 |
temperature=0.7,
|
162 |
do_sample=True,
|
163 |
num_return_sequences=1,
|
164 |
-
truncation=True
|
|
|
|
|
165 |
)
|
166 |
|
167 |
-
|
|
|
|
|
168 |
except Exception as e:
|
169 |
logger.error(f"Analysis generation error: {str(e)}")
|
170 |
return "Error in analysis generation"
|
171 |
finally:
|
172 |
self.model_manager.unload_model(model_name)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
def generate_recommendations(self, analysis):
|
175 |
-
"""Generate recommendations"""
|
176 |
try:
|
177 |
model_name = self.models["recommendation"]
|
178 |
self.model_manager.load_model(model_name, "generation")
|
179 |
|
180 |
-
prompt = f"""Based on this analysis:
|
|
|
|
|
181 |
{analysis}
|
182 |
-
|
183 |
-
|
|
|
184 |
1. Strategic Initiatives
|
|
|
|
|
|
|
|
|
185 |
2. Operational Improvements
|
|
|
|
|
|
|
|
|
186 |
3. Financial Management
|
|
|
|
|
|
|
|
|
187 |
4. Risk Mitigation
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
response = self.model_manager.get_model(model_name)(
|
191 |
prompt,
|
192 |
-
max_length=
|
193 |
-
|
|
|
194 |
do_sample=True,
|
195 |
num_return_sequences=1,
|
196 |
-
truncation=True
|
|
|
|
|
197 |
)
|
198 |
|
199 |
-
|
|
|
|
|
200 |
except Exception as e:
|
201 |
logger.error(f"Recommendations generation error: {str(e)}")
|
202 |
return "Error generating recommendations"
|
203 |
finally:
|
204 |
self.model_manager.unload_model(model_name)
|
205 |
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
def analyze_financial_statements(income_statement, balance_sheet):
|
209 |
-
"""Main analysis function"""
|
210 |
try:
|
|
|
211 |
analyzer = FinancialAnalyzer()
|
212 |
|
213 |
# Validate inputs
|
@@ -240,7 +416,9 @@ def analyze_financial_statements(income_statement, balance_sheet):
|
|
240 |
recommendations = analyzer.generate_recommendations(analysis)
|
241 |
|
242 |
# Format results
|
243 |
-
|
|
|
|
|
244 |
|
245 |
except Exception as e:
|
246 |
logger.error(f"Analysis error: {str(e)}")
|
@@ -254,7 +432,7 @@ def analyze_financial_statements(income_statement, balance_sheet):
|
|
254 |
3. File size is within limits"""
|
255 |
|
256 |
def format_results(analysis, sentiment, recommendations):
|
257 |
-
"""Format analysis results"""
|
258 |
try:
|
259 |
if not isinstance(analysis, str) or not isinstance(recommendations, str):
|
260 |
raise ValueError("Invalid input types")
|
@@ -280,7 +458,7 @@ def format_results(analysis, sentiment, recommendations):
|
|
280 |
logger.error(f"Formatting error: {str(e)}")
|
281 |
return "Error formatting results"
|
282 |
|
283 |
-
# Create Gradio interface
|
284 |
iface = gr.Interface(
|
285 |
fn=analyze_financial_statements,
|
286 |
inputs=[
|
@@ -294,7 +472,10 @@ iface = gr.Interface(
|
|
294 |
- Sentiment Analysis (FinBERT)
|
295 |
- Strategic Recommendations (Falcon)
|
296 |
|
297 |
-
Note:
|
|
|
|
|
|
|
298 |
flagging_mode="never"
|
299 |
)
|
300 |
|
|
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
import logging
|
|
|
6 |
import gc
|
7 |
+
import signal
|
8 |
+
from contextlib import contextmanager
|
9 |
+
import psutil
|
10 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
11 |
|
12 |
# Setup logging
|
13 |
logging.basicConfig(
|
|
|
20 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
logger.info(f"Using device: {DEVICE}")
|
22 |
|
23 |
+
def monitor_memory():
|
24 |
+
"""Monitor system memory usage"""
|
25 |
+
try:
|
26 |
+
process = psutil.Process(os.getpid())
|
27 |
+
memory_info = process.memory_info()
|
28 |
+
logger.info(f"Memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
|
29 |
+
if DEVICE == "cuda":
|
30 |
+
logger.info(f"GPU Memory: {torch.cuda.max_memory_allocated() / 1024 / 1024:.2f} MB")
|
31 |
+
except Exception as e:
|
32 |
+
logger.error(f"Error monitoring memory: {str(e)}")
|
33 |
+
|
34 |
def clear_gpu_memory():
|
35 |
"""Utility function to clear GPU memory"""
|
36 |
if DEVICE == "cuda":
|
37 |
torch.cuda.empty_cache()
|
38 |
gc.collect()
|
39 |
|
40 |
+
@contextmanager
|
41 |
+
def timeout_context(seconds):
|
42 |
+
def signal_handler(signum, frame):
|
43 |
+
raise TimeoutError(f"Operation timed out after {seconds} seconds")
|
44 |
+
signal.signal(signal.SIGALRM, signal_handler)
|
45 |
+
signal.alarm(seconds)
|
46 |
+
try:
|
47 |
+
yield
|
48 |
+
finally:
|
49 |
+
signal.alarm(0)
|
50 |
+
|
51 |
class ModelManager:
|
52 |
"""Handles model loading and inference"""
|
53 |
|
|
|
55 |
self.device = DEVICE
|
56 |
self.models = {}
|
57 |
self.tokenizers = {}
|
58 |
+
self.model_cache = {}
|
59 |
+
self.max_cache_size = 2
|
60 |
|
61 |
+
def load_model(self, model_name, model_type="sentiment", timeout=300):
|
62 |
+
"""Load model and tokenizer with timeout"""
|
63 |
try:
|
64 |
+
if model_name in self.model_cache:
|
65 |
+
self.models[model_name] = self.model_cache[model_name]
|
66 |
+
logger.info(f"Loaded {model_name} from cache")
|
67 |
+
return
|
68 |
+
|
69 |
+
with timeout_context(timeout):
|
70 |
+
if model_name not in self.models:
|
71 |
+
if model_type == "sentiment":
|
72 |
+
self.tokenizers[model_name] = AutoTokenizer.from_pretrained(
|
73 |
+
model_name,
|
74 |
+
use_fast=True
|
75 |
+
)
|
76 |
+
self.models[model_name] = AutoModelForSequenceClassification.from_pretrained(
|
77 |
+
model_name,
|
78 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
79 |
+
).to(self.device)
|
80 |
+
else:
|
81 |
+
self.models[model_name] = pipeline(
|
82 |
+
"text-generation",
|
83 |
+
model=model_name,
|
84 |
+
device_map="auto" if self.device == "cuda" else None,
|
85 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
86 |
+
)
|
87 |
+
|
88 |
+
# Cache the model
|
89 |
+
self.cache_model(model_name, self.models[model_name])
|
90 |
+
logger.info(f"Successfully loaded model: {model_name}")
|
91 |
+
monitor_memory()
|
92 |
+
|
93 |
except Exception as e:
|
94 |
logger.error(f"Error loading model {model_name}: {str(e)}")
|
95 |
raise
|
96 |
|
97 |
+
def cache_model(self, model_name, model):
|
98 |
+
"""Cache model for faster reloading"""
|
99 |
+
if len(self.model_cache) >= self.max_cache_size:
|
100 |
+
oldest_model = next(iter(self.model_cache))
|
101 |
+
del self.model_cache[oldest_model]
|
102 |
+
self.model_cache[model_name] = model
|
103 |
+
|
104 |
def unload_model(self, model_name):
|
105 |
"""Unload model and tokenizer"""
|
106 |
try:
|
|
|
140 |
raise
|
141 |
|
142 |
def read_csv(self, file_obj):
|
143 |
+
"""Read and validate CSV file with better error handling"""
|
144 |
try:
|
145 |
if file_obj is None:
|
146 |
raise ValueError("No file provided")
|
147 |
|
148 |
+
# Read CSV with explicit encoding and error handling
|
149 |
+
df = pd.read_csv(file_obj, encoding='utf-8', on_bad_lines='skip')
|
150 |
|
151 |
if df.empty:
|
152 |
raise ValueError("Empty CSV file")
|
153 |
+
|
154 |
+
# Log CSV information
|
155 |
+
logger.info(f"CSV Preview:\n{df.head()}")
|
156 |
+
logger.info(f"CSV Columns: {df.columns.tolist()}")
|
157 |
+
|
158 |
+
# Validate numeric columns
|
159 |
+
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
|
160 |
+
if len(numeric_cols) == 0:
|
161 |
+
raise ValueError("No numeric columns found in CSV")
|
162 |
+
|
163 |
+
# Generate statistical summary
|
164 |
+
summary = df[numeric_cols].describe()
|
165 |
+
logger.info(f"Statistical Summary:\n{summary}")
|
166 |
+
|
167 |
+
return summary
|
168 |
+
|
169 |
except Exception as e:
|
170 |
logger.error(f"Error reading CSV: {str(e)}")
|
171 |
raise
|
172 |
|
|
|
173 |
def analyze_sentiment(self, text):
|
174 |
+
"""Analyze sentiment using FinBERT with improved error handling"""
|
175 |
try:
|
176 |
model_name = self.models["sentiment"]
|
177 |
model = self.model_manager.get_model(model_name)
|
178 |
tokenizer = self.model_manager.get_tokenizer(model_name)
|
179 |
|
180 |
+
# Validate input
|
181 |
+
if not text or not isinstance(text, str):
|
182 |
+
raise ValueError("Invalid input text")
|
183 |
+
|
184 |
+
# Preprocess text
|
185 |
+
text = text.strip()
|
186 |
+
if len(text) == 0:
|
187 |
+
raise ValueError("Empty text input")
|
188 |
+
|
189 |
+
# Tokenize with proper padding and truncation
|
190 |
inputs = tokenizer(
|
191 |
text,
|
192 |
return_tensors="pt",
|
|
|
195 |
padding=True
|
196 |
).to(DEVICE)
|
197 |
|
198 |
+
# Get prediction
|
199 |
with torch.no_grad():
|
200 |
outputs = model(**inputs)
|
201 |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
202 |
|
203 |
+
# Process results
|
204 |
labels = ['negative', 'neutral', 'positive']
|
205 |
scores = probabilities[0].cpu().tolist()
|
206 |
|
|
|
209 |
for label, score in zip(labels, scores)
|
210 |
]
|
211 |
|
212 |
+
logger.info(f"Sentiment analysis results: {results}")
|
213 |
return [results]
|
214 |
+
|
215 |
except Exception as e:
|
216 |
logger.error(f"Sentiment analysis error: {str(e)}")
|
217 |
return [{"label": "error", "score": 1.0}]
|
218 |
|
219 |
def generate_analysis(self, financial_data):
|
220 |
+
"""Generate strategic analysis with improved prompting"""
|
221 |
try:
|
222 |
model_name = self.models["analysis"]
|
223 |
self.model_manager.load_model(model_name, "generation")
|
224 |
|
225 |
+
prompt = f"""[INST] As a senior financial analyst, provide a detailed analysis of these financial statements:
|
226 |
+
|
227 |
+
Financial Data:
|
228 |
{financial_data}
|
229 |
+
|
230 |
+
Please provide a comprehensive analysis covering:
|
231 |
+
|
232 |
1. Business Health Assessment
|
233 |
+
- Current financial position
|
234 |
+
- Key performance indicators
|
235 |
+
- Trend analysis
|
236 |
+
|
237 |
2. Key Strategic Insights
|
238 |
+
- Major financial trends
|
239 |
+
- Performance drivers
|
240 |
+
- Areas of concern
|
241 |
+
|
242 |
3. Market Position
|
243 |
+
- Competitive advantages
|
244 |
+
- Market share indicators
|
245 |
+
- Industry comparison
|
246 |
+
|
247 |
4. Growth Opportunities
|
248 |
+
- Expansion potential
|
249 |
+
- Investment opportunities
|
250 |
+
- Revenue growth areas
|
251 |
+
|
252 |
+
5. Risk Factors
|
253 |
+
- Financial risks
|
254 |
+
- Operational risks
|
255 |
+
- Market risks
|
256 |
+
|
257 |
+
Provide specific metrics and detailed explanations for each section. [/INST]"""
|
258 |
|
259 |
response = self.model_manager.get_model(model_name)(
|
260 |
prompt,
|
261 |
+
max_length=2000,
|
262 |
+
min_length=800,
|
263 |
temperature=0.7,
|
264 |
do_sample=True,
|
265 |
num_return_sequences=1,
|
266 |
+
truncation=True,
|
267 |
+
repetition_penalty=1.2,
|
268 |
+
no_repeat_ngram_size=3
|
269 |
)
|
270 |
|
271 |
+
analysis_text = response[0]['generated_text']
|
272 |
+
return self.format_analysis_text(analysis_text)
|
273 |
+
|
274 |
except Exception as e:
|
275 |
logger.error(f"Analysis generation error: {str(e)}")
|
276 |
return "Error in analysis generation"
|
277 |
finally:
|
278 |
self.model_manager.unload_model(model_name)
|
279 |
|
280 |
+
def format_analysis_text(self, text):
|
281 |
+
"""Format the analysis text for better readability"""
|
282 |
+
try:
|
283 |
+
sections = text.split('\n\n')
|
284 |
+
formatted_sections = []
|
285 |
+
|
286 |
+
for section in sections:
|
287 |
+
if section.strip():
|
288 |
+
if any(section.startswith(str(i)) for i in range(1, 6)):
|
289 |
+
formatted_sections.append(f"### {section}")
|
290 |
+
else:
|
291 |
+
formatted_sections.append(section)
|
292 |
+
|
293 |
+
return '\n\n'.join(formatted_sections)
|
294 |
+
except Exception as e:
|
295 |
+
logger.error(f"Error formatting analysis text: {str(e)}")
|
296 |
+
return text
|
297 |
+
|
298 |
def generate_recommendations(self, analysis):
|
299 |
+
"""Generate recommendations with comprehensive prompting"""
|
300 |
try:
|
301 |
model_name = self.models["recommendation"]
|
302 |
self.model_manager.load_model(model_name, "generation")
|
303 |
|
304 |
+
prompt = f"""Based on this financial analysis, provide detailed strategic recommendations:
|
305 |
+
|
306 |
+
Analysis Context:
|
307 |
{analysis}
|
308 |
+
|
309 |
+
Please provide specific, actionable recommendations for each area:
|
310 |
+
|
311 |
1. Strategic Initiatives
|
312 |
+
- Detail specific actions for business growth
|
313 |
+
- Identify market expansion opportunities
|
314 |
+
- Outline product/service development strategies
|
315 |
+
|
316 |
2. Operational Improvements
|
317 |
+
- Specify efficiency enhancement measures
|
318 |
+
- Recommend process optimization steps
|
319 |
+
- Suggest cost reduction strategies
|
320 |
+
|
321 |
3. Financial Management
|
322 |
+
- Provide cash flow optimization tactics
|
323 |
+
- Prioritize investment opportunities
|
324 |
+
- Detail risk management approaches
|
325 |
+
|
326 |
4. Risk Mitigation
|
327 |
+
- Address identified risks
|
328 |
+
- Outline specific mitigation strategies
|
329 |
+
- Suggest monitoring mechanisms
|
330 |
+
|
331 |
+
5. Growth Strategy
|
332 |
+
- Identify market opportunities
|
333 |
+
- Detail expansion plans
|
334 |
+
- Specify resource requirements
|
335 |
+
|
336 |
+
For each recommendation:
|
337 |
+
- Include implementation timeline
|
338 |
+
- Specify resource requirements
|
339 |
+
- Define success metrics
|
340 |
+
- List potential challenges
|
341 |
+
|
342 |
+
Format each section with clear, actionable bullet points."""
|
343 |
|
344 |
response = self.model_manager.get_model(model_name)(
|
345 |
prompt,
|
346 |
+
max_length=2000,
|
347 |
+
min_length=800,
|
348 |
+
temperature=0.7,
|
349 |
do_sample=True,
|
350 |
num_return_sequences=1,
|
351 |
+
truncation=True,
|
352 |
+
repetition_penalty=1.2,
|
353 |
+
no_repeat_ngram_size=3
|
354 |
)
|
355 |
|
356 |
+
recommendations_text = response[0]['generated_text']
|
357 |
+
return self.format_recommendation_text(recommendations_text)
|
358 |
+
|
359 |
except Exception as e:
|
360 |
logger.error(f"Recommendations generation error: {str(e)}")
|
361 |
return "Error generating recommendations"
|
362 |
finally:
|
363 |
self.model_manager.unload_model(model_name)
|
364 |
|
365 |
+
def format_recommendation_text(self, text):
|
366 |
+
"""Format the recommendation text for better readability"""
|
367 |
+
try:
|
368 |
+
sections = text.split('\n\n')
|
369 |
+
formatted_sections = []
|
370 |
+
|
371 |
+
for section in sections:
|
372 |
+
if section.strip():
|
373 |
+
if any(section.startswith(str(i)) for i in range(1, 6)):
|
374 |
+
formatted_sections.append(f"### {section}")
|
375 |
+
else:
|
376 |
+
formatted_sections.append(section)
|
377 |
+
|
378 |
+
return '\n\n'.join(formatted_sections)
|
379 |
+
except Exception as e:
|
380 |
+
logger.error(f"Error formatting recommendation text: {str(e)}")
|
381 |
+
return text
|
382 |
|
383 |
def analyze_financial_statements(income_statement, balance_sheet):
|
384 |
+
"""Main analysis function with improved error handling and logging"""
|
385 |
try:
|
386 |
+
monitor_memory()
|
387 |
analyzer = FinancialAnalyzer()
|
388 |
|
389 |
# Validate inputs
|
|
|
416 |
recommendations = analyzer.generate_recommendations(analysis)
|
417 |
|
418 |
# Format results
|
419 |
+
result = format_results(analysis, sentiment, recommendations)
|
420 |
+
monitor_memory()
|
421 |
+
return result
|
422 |
|
423 |
except Exception as e:
|
424 |
logger.error(f"Analysis error: {str(e)}")
|
|
|
432 |
3. File size is within limits"""
|
433 |
|
434 |
def format_results(analysis, sentiment, recommendations):
|
435 |
+
"""Format analysis results with improved validation and formatting"""
|
436 |
try:
|
437 |
if not isinstance(analysis, str) or not isinstance(recommendations, str):
|
438 |
raise ValueError("Invalid input types")
|
|
|
458 |
logger.error(f"Formatting error: {str(e)}")
|
459 |
return "Error formatting results"
|
460 |
|
461 |
+
# Create Gradio interface with improved error handling
|
462 |
iface = gr.Interface(
|
463 |
fn=analyze_financial_statements,
|
464 |
inputs=[
|
|
|
472 |
- Sentiment Analysis (FinBERT)
|
473 |
- Strategic Recommendations (Falcon)
|
474 |
|
475 |
+
Note:
|
476 |
+
- Files must be in CSV format
|
477 |
+
- Each file should contain financial data in columns
|
478 |
+
- Maximum file size: 10MB""",
|
479 |
flagging_mode="never"
|
480 |
)
|
481 |
|