Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ logger = logging.getLogger(__name__)
|
|
17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
logger.info(f"Using device: {DEVICE}")
|
19 |
|
20 |
-
# Clear GPU memory utility
|
21 |
def clear_gpu_memory():
|
22 |
"""Utility function to clear GPU memory"""
|
23 |
if DEVICE == "cuda":
|
@@ -25,112 +24,172 @@ def clear_gpu_memory():
|
|
25 |
gc.collect()
|
26 |
|
27 |
class FinancialAnalyzer:
|
28 |
-
"""Financial analysis using Tiny Llama and
|
29 |
|
30 |
def __init__(self):
|
31 |
self.analysis_model = None
|
32 |
self.sentiment_model = None
|
33 |
-
self.falcon_model = None
|
34 |
self.load_models()
|
35 |
|
36 |
def load_models(self):
|
37 |
"""Load models for analysis and sentiment"""
|
38 |
try:
|
39 |
-
# Load Tiny Llama for
|
|
|
40 |
self.analysis_model = pipeline(
|
41 |
"text-generation",
|
42 |
-
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
43 |
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
44 |
)
|
45 |
|
46 |
-
# Load FinBERT for sentiment
|
|
|
47 |
self.sentiment_model = pipeline(
|
48 |
"text-classification",
|
49 |
-
model="
|
50 |
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
51 |
)
|
52 |
|
53 |
-
|
54 |
-
self.falcon_model = pipeline(
|
55 |
-
"text-generation",
|
56 |
-
model="tiiuae/falcon-7b", # Falcon model for recommendations and roadmap
|
57 |
-
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
58 |
-
)
|
59 |
-
|
60 |
-
logger.info("Tiny Llama, FinBERT, and Falcon models loaded successfully")
|
61 |
except Exception as e:
|
62 |
logger.error(f"Error loading models: {str(e)}")
|
63 |
raise
|
64 |
|
65 |
-
def
|
66 |
-
"""
|
67 |
try:
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
# Generate status and insights using Tiny Llama
|
72 |
-
status_prompt = f"Please analyze the following financial data and provide status, insights, and metrics:\n\n{combined_data}"
|
73 |
response = self.analysis_model(
|
74 |
-
|
75 |
max_length=1500,
|
|
|
76 |
num_return_sequences=1,
|
77 |
-
|
78 |
-
temperature=0.7
|
79 |
)
|
80 |
-
insights_result = response[0]['generated_text'].strip()
|
81 |
|
82 |
-
|
83 |
-
sentiment = self.sentiment_model(insights_result[:512])[0] # Limit input to first 512 tokens
|
84 |
-
sentiment_label = sentiment['label']
|
85 |
-
sentiment_score = sentiment['score']
|
86 |
|
87 |
-
# Generate recommendations and roadmap using Falcon
|
88 |
-
roadmap_prompt = f"Based on the following financial insights, create a strategic roadmap and recommendations for the company:\n\n{insights_result}"
|
89 |
-
roadmap_response = self.falcon_model(
|
90 |
-
roadmap_prompt,
|
91 |
-
max_length=1500,
|
92 |
-
num_return_sequences=1,
|
93 |
-
do_sample=True,
|
94 |
-
temperature=0.7
|
95 |
-
)
|
96 |
-
roadmap_result = roadmap_response[0]['generated_text'].strip()
|
97 |
-
|
98 |
-
# Return a comprehensive report
|
99 |
-
result = f"""# Financial Analysis Report
|
100 |
-
### Sentiment Analysis: {sentiment_label} ({sentiment_score:.1%})
|
101 |
-
### Financial Status and Insights:
|
102 |
-
{insights_result}
|
103 |
-
### Recommendations and Roadmap:
|
104 |
-
{roadmap_result}
|
105 |
-
"""
|
106 |
-
return result
|
107 |
-
|
108 |
except Exception as e:
|
109 |
-
logger.error(f"
|
110 |
-
return f"
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
def analyze_statements(income_statement, balance_sheet):
|
118 |
"""Main function to analyze financial statements"""
|
119 |
try:
|
120 |
if not income_statement or not balance_sheet:
|
121 |
return "Please upload both Income Statement and Balance Sheet CSV files."
|
122 |
-
|
123 |
-
#
|
124 |
-
income_data = read_csv(income_statement.name)
|
125 |
-
balance_data = read_csv(balance_sheet.name)
|
126 |
-
|
127 |
-
# Create analyzer and process data
|
128 |
analyzer = FinancialAnalyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
result = analyzer.analyze_financials(income_data, balance_data)
|
130 |
|
131 |
-
# Clear memory
|
132 |
clear_gpu_memory()
|
133 |
-
|
134 |
return result
|
135 |
|
136 |
except Exception as e:
|
@@ -138,29 +197,47 @@ def analyze_statements(income_statement, balance_sheet):
|
|
138 |
return f"""Analysis Error: {str(e)}
|
139 |
|
140 |
Please ensure your CSV files:
|
141 |
-
1.
|
142 |
-
2.
|
143 |
-
3.
|
144 |
|
145 |
# Create Gradio interface
|
146 |
iface = gr.Interface(
|
147 |
fn=analyze_statements,
|
148 |
-
inputs=[
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
outputs=gr.Markdown(),
|
151 |
-
title="
|
152 |
-
description="""## Financial Analysis Tool
|
|
|
153 |
Upload your financial statements to get:
|
154 |
-
- Status
|
155 |
-
- Key
|
156 |
-
-
|
157 |
-
|
|
|
|
|
|
|
|
|
158 |
)
|
159 |
|
160 |
# Launch the interface
|
161 |
if __name__ == "__main__":
|
162 |
try:
|
163 |
-
iface.
|
|
|
|
|
|
|
|
|
|
|
164 |
except Exception as e:
|
165 |
logger.error(f"Launch error: {str(e)}")
|
166 |
sys.exit(1)
|
|
|
17 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
logger.info(f"Using device: {DEVICE}")
|
19 |
|
|
|
20 |
def clear_gpu_memory():
|
21 |
"""Utility function to clear GPU memory"""
|
22 |
if DEVICE == "cuda":
|
|
|
24 |
gc.collect()
|
25 |
|
26 |
class FinancialAnalyzer:
|
27 |
+
"""Financial analysis using Tiny Llama and FinBERT models"""
|
28 |
|
29 |
def __init__(self):
|
30 |
self.analysis_model = None
|
31 |
self.sentiment_model = None
|
|
|
32 |
self.load_models()
|
33 |
|
34 |
def load_models(self):
|
35 |
"""Load models for analysis and sentiment"""
|
36 |
try:
|
37 |
+
# Load Tiny Llama for analysis
|
38 |
+
logger.info("Loading TinyLlama model...")
|
39 |
self.analysis_model = pipeline(
|
40 |
"text-generation",
|
41 |
+
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
42 |
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
43 |
)
|
44 |
|
45 |
+
# Load FinBERT for sentiment
|
46 |
+
logger.info("Loading FinBERT model...")
|
47 |
self.sentiment_model = pipeline(
|
48 |
"text-classification",
|
49 |
+
model="ProsusAI/finbert",
|
50 |
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
|
51 |
)
|
52 |
|
53 |
+
logger.info("Models loaded successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
except Exception as e:
|
55 |
logger.error(f"Error loading models: {str(e)}")
|
56 |
raise
|
57 |
|
58 |
+
def process_csv(self, file_obj):
|
59 |
+
"""Process CSV file and extract financial data"""
|
60 |
try:
|
61 |
+
if file_obj is None:
|
62 |
+
raise ValueError("No file provided")
|
63 |
+
|
64 |
+
# Read CSV with better error handling
|
65 |
+
df = pd.read_csv(file_obj, skipinitialspace=True)
|
66 |
+
|
67 |
+
if df.empty:
|
68 |
+
raise ValueError("Empty CSV file")
|
69 |
+
|
70 |
+
# Clean column names
|
71 |
+
df.columns = df.columns.str.strip()
|
72 |
+
|
73 |
+
# Remove unnamed columns
|
74 |
+
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
|
75 |
+
|
76 |
+
# Convert to numeric where possible
|
77 |
+
for col in df.columns:
|
78 |
+
df[col] = pd.to_numeric(df[col].str.replace('[$,()]', '', regex=True), errors='ignore')
|
79 |
+
|
80 |
+
# Get numeric columns
|
81 |
+
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
|
82 |
+
if len(numeric_cols) == 0:
|
83 |
+
raise ValueError("No numeric columns found in CSV")
|
84 |
+
|
85 |
+
return df[numeric_cols].describe()
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
logger.error(f"Error processing CSV: {str(e)}")
|
89 |
+
raise
|
90 |
+
|
91 |
+
def analyze_financials(self, income_data, balance_data):
|
92 |
+
"""Generate financial analysis and recommendations"""
|
93 |
+
try:
|
94 |
+
financial_context = f"""
|
95 |
+
Income Statement Analysis:
|
96 |
+
{income_data.to_string()}
|
97 |
+
|
98 |
+
Balance Sheet Analysis:
|
99 |
+
{balance_data.to_string()}
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Generate sentiment analysis
|
103 |
+
sentiment = self.sentiment_model(
|
104 |
+
financial_context,
|
105 |
+
truncation=True,
|
106 |
+
max_length=512
|
107 |
+
)[0]
|
108 |
+
|
109 |
+
# Generate analysis
|
110 |
+
analysis_prompt = f"""[INST] As a financial analyst, analyze these financial statements:
|
111 |
+
|
112 |
+
{financial_context}
|
113 |
+
|
114 |
+
Sentiment: {sentiment['label']} ({sentiment['score']:.2%})
|
115 |
+
|
116 |
+
Provide:
|
117 |
+
1. Business Status and Health Assessment
|
118 |
+
2. Key Financial Insights and Metrics
|
119 |
+
3. Strategic Recommendations and Action Plan
|
120 |
+
|
121 |
+
Be specific and data-driven in your analysis.
|
122 |
+
[/INST]"""
|
123 |
|
|
|
|
|
124 |
response = self.analysis_model(
|
125 |
+
analysis_prompt,
|
126 |
max_length=1500,
|
127 |
+
do_sample=False,
|
128 |
num_return_sequences=1,
|
129 |
+
truncation=True
|
|
|
130 |
)
|
|
|
131 |
|
132 |
+
return self.format_response(response[0]['generated_text'], sentiment)
|
|
|
|
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
except Exception as e:
|
135 |
+
logger.error(f"Error in analysis: {str(e)}")
|
136 |
+
return f"Error generating analysis: {str(e)}"
|
137 |
|
138 |
+
def format_response(self, analysis_text, sentiment):
|
139 |
+
"""Format the analysis response"""
|
140 |
+
try:
|
141 |
+
sections = analysis_text.split('\n\n')
|
142 |
+
|
143 |
+
output = [
|
144 |
+
"# Financial Analysis Report\n\n",
|
145 |
+
f"## Overall Sentiment: {sentiment['label'].upper()} ({sentiment['score']:.2%})\n\n"
|
146 |
+
]
|
147 |
+
|
148 |
+
current_section = None
|
149 |
+
for section in sections:
|
150 |
+
section = section.strip()
|
151 |
+
if not section:
|
152 |
+
continue
|
153 |
+
|
154 |
+
if "Business Status" in section:
|
155 |
+
output.append("## Business Status\n")
|
156 |
+
current_section = "status"
|
157 |
+
elif "Key Financial Insights" in section:
|
158 |
+
output.append("\n## Key Insights\n")
|
159 |
+
current_section = "insights"
|
160 |
+
elif "Strategic Recommendations" in section:
|
161 |
+
output.append("\n## Recommendations\n")
|
162 |
+
current_section = "recommendations"
|
163 |
+
elif current_section:
|
164 |
+
output.append(f"- {section}\n")
|
165 |
+
|
166 |
+
return "".join(output)
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
logger.error(f"Error formatting response: {str(e)}")
|
170 |
+
return "Error formatting analysis results"
|
171 |
|
172 |
def analyze_statements(income_statement, balance_sheet):
|
173 |
"""Main function to analyze financial statements"""
|
174 |
try:
|
175 |
if not income_statement or not balance_sheet:
|
176 |
return "Please upload both Income Statement and Balance Sheet CSV files."
|
177 |
+
|
178 |
+
# Initialize analyzer
|
|
|
|
|
|
|
|
|
179 |
analyzer = FinancialAnalyzer()
|
180 |
+
|
181 |
+
# Process statements
|
182 |
+
logger.info("Processing income statement...")
|
183 |
+
income_data = analyzer.process_csv(income_statement)
|
184 |
+
|
185 |
+
logger.info("Processing balance sheet...")
|
186 |
+
balance_data = analyzer.process_csv(balance_sheet)
|
187 |
+
|
188 |
+
# Generate analysis
|
189 |
+
logger.info("Generating analysis...")
|
190 |
result = analyzer.analyze_financials(income_data, balance_data)
|
191 |
|
|
|
192 |
clear_gpu_memory()
|
|
|
193 |
return result
|
194 |
|
195 |
except Exception as e:
|
|
|
197 |
return f"""Analysis Error: {str(e)}
|
198 |
|
199 |
Please ensure your CSV files:
|
200 |
+
1. Contain numeric financial data
|
201 |
+
2. Have proper column headers
|
202 |
+
3. Are not corrupted"""
|
203 |
|
204 |
# Create Gradio interface
|
205 |
iface = gr.Interface(
|
206 |
fn=analyze_statements,
|
207 |
+
inputs=[
|
208 |
+
gr.File(
|
209 |
+
label="Upload Income Statement (CSV)",
|
210 |
+
file_types=[".csv"]
|
211 |
+
),
|
212 |
+
gr.File(
|
213 |
+
label="Upload Balance Sheet (CSV)",
|
214 |
+
file_types=[".csv"]
|
215 |
+
)
|
216 |
+
],
|
217 |
outputs=gr.Markdown(),
|
218 |
+
title="AI Financial Statement Analyzer",
|
219 |
+
description="""## Financial Analysis Tool
|
220 |
+
|
221 |
Upload your financial statements to get:
|
222 |
+
- Business Status Assessment
|
223 |
+
- Key Financial Insights
|
224 |
+
- Strategic Recommendations
|
225 |
+
|
226 |
+
Requirements:
|
227 |
+
- CSV files with numeric data
|
228 |
+
- Standard financial statement format""",
|
229 |
+
flagging_mode="never"
|
230 |
)
|
231 |
|
232 |
# Launch the interface
|
233 |
if __name__ == "__main__":
|
234 |
try:
|
235 |
+
iface.queue()
|
236 |
+
iface.launch(
|
237 |
+
share=False,
|
238 |
+
server_name="0.0.0.0",
|
239 |
+
server_port=7860
|
240 |
+
)
|
241 |
except Exception as e:
|
242 |
logger.error(f"Launch error: {str(e)}")
|
243 |
sys.exit(1)
|