Spaces:
Sleeping
Sleeping
File size: 6,309 Bytes
ea4b18b b2501de 74f7ba2 b2501de c6b42a6 ab0bea5 74f7ba2 ab0bea5 ea4b18b ab0bea5 74f7ba2 ab0bea5 c6b42a6 ab0bea5 c6b42a6 74f7ba2 c6b42a6 74f7ba2 c6b42a6 9bdd84e c6b42a6 ab0bea5 c6b42a6 ab0bea5 c6b42a6 9bdd84e ab0bea5 c6b42a6 74f7ba2 9bdd84e c6b42a6 9bdd84e 5462ac3 ab0bea5 ea4b18b 74f7ba2 ea4b18b c6b42a6 ea4b18b ab0bea5 c6b42a6 ea4b18b 5462ac3 ea4b18b 5462ac3 ea4b18b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import pandas as pd
import numpy as np
import json
import re
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
import torch
class FinancialAnalyzer:
def __init__(self):
print("Initializing Financial Analyzer...")
self.initialize_models()
def initialize_models(self):
print("Loading models...")
self.tiny_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.tiny_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.finbert_tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
self.finbert_model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
print("Models loaded successfully!")
def parse_markdown_table(self, markdown_content):
"""Parse markdown table into pandas DataFrame"""
# Split content into lines
lines = markdown_content.strip().split('\n')
# Find table start (line with |)
table_lines = []
headers = None
current_table = []
for line in lines:
if '|' in line:
# Skip separator lines (contains ---)
if '-|-' in line:
continue
# Clean and split the line
row = [cell.strip() for cell in line.split('|')[1:-1]]
if headers is None:
headers = row
else:
current_table.append(row)
# Create DataFrame
df = pd.DataFrame(current_table, columns=headers)
return df
def extract_financial_data(self, markdown_content):
"""Convert markdown content to a structured text format"""
# Remove markdown formatting
clean_text = markdown_content.replace('#', '').replace('*', '')
# Extract tables
tables = {}
current_section = "General"
for line in clean_text.split('\n'):
if line.strip() and not line.startswith('|'):
current_section = line.strip()
elif '|' in line:
if current_section not in tables:
tables[current_section] = []
tables[current_section].append(line)
# Convert to text format
structured_text = []
for section, content in tables.items():
structured_text.append(f"\n{section}:")
if content:
df = self.parse_markdown_table('\n'.join(content))
structured_text.append(df.to_string())
return '\n'.join(structured_text)
def analyze_financials(self, balance_sheet_file, income_stmt_file):
"""Main analysis function"""
try:
# Read markdown files
with open(balance_sheet_file, 'r') as f:
balance_sheet_content = f.read()
with open(income_stmt_file, 'r') as f:
income_stmt_content = f.read()
# Convert to structured text
structured_balance = self.extract_financial_data(balance_sheet_content)
structured_income = self.extract_financial_data(income_stmt_content)
# Create analysis prompt
prompt = f"""<human>Please analyze these financial statements and provide detailed insights:
Financial Statements Analysis (2021-2025)
Balance Sheet Summary:
{structured_balance}
Income Statement Summary:
{structured_income}
Please provide a detailed analysis including:
1. Financial Health Assessment
- Liquidity position
- Capital structure
- Asset efficiency
2. Profitability Analysis
- Revenue trends
- Cost management
- Profit margins
3. Growth Analysis
- Year-over-year growth rates
- Market position
- Future growth potential
4. Risk Assessment
- Operating risks
- Financial risks
- Strategic risks
5. Recommendations
- Short-term actions
- Medium-term strategy
- Long-term planning
6. Future Outlook
- Market conditions
- Company positioning
- Growth opportunities</human>"""
# Generate AI analysis
inputs = self.tiny_tokenizer(prompt, return_tensors="pt", truncation=True)
outputs = self.tiny_model.generate(
inputs["input_ids"],
max_length=2048,
temperature=0.7,
top_p=0.95,
do_sample=True
)
analysis = self.tiny_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Generate sentiment
sentiment = self.analyze_sentiment(structured_balance + structured_income)
# Compile results
results = {
"Financial Analysis": analysis,
"Sentiment Analysis": sentiment,
"Analysis Period": "2021-2025",
"Note": "All values in millions ($M)"
}
return json.dumps(results, indent=2)
except Exception as e:
return f"Error in analysis: {str(e)}\n\nDetails: {type(e).__name__}"
def analyze_sentiment(self, text):
inputs = self.finbert_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = self.finbert_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
sentiment_labels = ['negative', 'neutral', 'positive']
return {
'sentiment': sentiment_labels[probs.argmax().item()],
'confidence': f"{probs.max().item():.2f}"
}
def create_interface():
analyzer = FinancialAnalyzer()
iface = gr.Interface(
fn=analyzer.analyze_financials,
inputs=[
gr.File(label="Balance Sheet (Markdown)", type="filepath"),
gr.File(label="Income Statement (Markdown)", type="filepath")
],
outputs=gr.Textbox(label="Analysis Results", lines=25),
title="Financial Statement Analyzer",
description="Upload financial statements in Markdown format for comprehensive AI-powered analysis."
)
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch() |