Spaces:
Sleeping
Sleeping
File size: 9,241 Bytes
ea4b18b b2501de 74f7ba2 b2501de 74f7ba2 ea4b18b 74f7ba2 9bdd84e 74f7ba2 9bdd84e 74f7ba2 9bdd84e 74f7ba2 ea4b18b 74f7ba2 ea4b18b 74f7ba2 ea4b18b 74f7ba2 ea4b18b 74f7ba2 5462ac3 74f7ba2 5462ac3 74f7ba2 5462ac3 74f7ba2 5462ac3 74f7ba2 ea4b18b 74f7ba2 9bdd84e 74f7ba2 b2501de 74f7ba2 b2501de 74f7ba2 9bdd84e 74f7ba2 9bdd84e 74f7ba2 9bdd84e 5462ac3 74f7ba2 ea4b18b 74f7ba2 ea4b18b 74f7ba2 ea4b18b 74f7ba2 ea4b18b 5462ac3 ea4b18b 5462ac3 ea4b18b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import pandas as pd
import numpy as np
import json
import chromadb
from chromadb.config import Settings
from datetime import datetime
class FastFinancialAnalyzer:
def __init__(self):
# Initialize ChromaDB
self.client = chromadb.Client(Settings(anonymized_telemetry=False))
# Create financial metrics collection
self.collection = self.client.create_collection(
name="financial_metrics_" + datetime.now().strftime("%Y%m%d_%H%M%S")
)
# Initialize ratio benchmarks
self.initialize_ratio_benchmarks()
def initialize_ratio_benchmarks(self):
"""Initialize benchmark ratios for comparison"""
self.benchmarks = {
"liquidity_ratios": {
"current_ratio": {"good": 2.0, "warning": 1.0},
"quick_ratio": {"good": 1.0, "warning": 0.5}
},
"profitability_ratios": {
"gross_margin": {"good": 0.4, "warning": 0.2},
"net_margin": {"good": 0.1, "warning": 0.05}
},
"efficiency_ratios": {
"inventory_turnover": {"good": 4, "warning": 2},
"asset_turnover": {"good": 0.5, "warning": 0.25}
}
}
def calculate_ratios(self, balance_sheet_df, income_stmt_df):
"""Calculate key financial ratios"""
try:
ratios = {}
# Clean numeric data
for df in [balance_sheet_df, income_stmt_df]:
for col in df.select_dtypes(include=['object']).columns:
df[col] = pd.to_numeric(df[col].astype(str).str.replace(r'[^\d.-]', ''), errors='coerce')
# Calculate ratios for each year
years = [col for col in balance_sheet_df.columns if str(col).isdigit()]
for year in years:
ratios[year] = {
"liquidity": {
"current_ratio": balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Assets', year].values[0] /
balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Liabilities', year].values[0],
"quick_ratio": (balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Assets', year].values[0] -
balance_sheet_df.loc[balance_sheet_df['Account'] == 'Inventory', year].values[0]) /
balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Liabilities', year].values[0]
},
"profitability": {
"gross_margin": income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Gross Profit', year].values[0] /
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', year].values[0],
"net_margin": income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Net Earnings', year].values[0] /
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', year].values[0]
},
"growth": {
"revenue_growth": None if year == years[0] else
(income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', year].values[0] -
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', str(int(year)-1)].values[0]) /
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', str(int(year)-1)].values[0] * 100
}
}
return ratios
except Exception as e:
return f"Error calculating ratios: {str(e)}"
def analyze_trends(self, ratios):
"""Analyze financial trends"""
trends = {
"liquidity": self.analyze_ratio_trend("current_ratio", ratios),
"profitability": self.analyze_ratio_trend("net_margin", ratios),
"growth": self.analyze_revenue_growth(ratios)
}
return trends
def analyze_ratio_trend(self, ratio_name, ratios):
"""Analyze trend for a specific ratio"""
values = []
years = sorted(ratios.keys())
for year in years:
if ratio_name in ratios[year].get("liquidity", {}):
values.append(ratios[year]["liquidity"][ratio_name])
elif ratio_name in ratios[year].get("profitability", {}):
values.append(ratios[year]["profitability"][ratio_name])
if not values:
return "No data available"
trend = np.polyfit(range(len(values)), values, 1)[0]
if trend > 0.05:
return "Strong upward trend"
elif trend > 0:
return "Slight upward trend"
elif trend > -0.05:
return "Stable"
else:
return "Downward trend"
def analyze_revenue_growth(self, ratios):
"""Analyze revenue growth trend"""
growth_rates = []
years = sorted(ratios.keys())[1:] # Skip first year as it won't have growth rate
for year in years:
if ratios[year]["growth"]["revenue_growth"] is not None:
growth_rates.append(ratios[year]["growth"]["revenue_growth"])
if not growth_rates:
return "No growth data available"
avg_growth = np.mean(growth_rates)
if avg_growth > 10:
return f"Strong growth (avg {avg_growth:.1f}%)"
elif avg_growth > 0:
return f"Moderate growth (avg {avg_growth:.1f}%)"
else:
return f"Declining growth (avg {avg_growth:.1f}%)"
def generate_insights(self, ratios, trends):
"""Generate actionable insights"""
insights = []
# Liquidity insights
current_ratio = ratios[max(ratios.keys())]["liquidity"]["current_ratio"]
if current_ratio < self.benchmarks["liquidity_ratios"]["current_ratio"]["warning"]:
insights.append("ALERT: Liquidity needs immediate attention")
elif current_ratio < self.benchmarks["liquidity_ratios"]["current_ratio"]["good"]:
insights.append("WATCH: Liquidity is below ideal levels")
# Profitability insights
net_margin = ratios[max(ratios.keys())]["profitability"]["net_margin"]
if net_margin > self.benchmarks["profitability_ratios"]["net_margin"]["good"]:
insights.append("STRONG: Excellent profit margins")
elif net_margin < self.benchmarks["profitability_ratios"]["net_margin"]["warning"]:
insights.append("ALERT: Profit margins need improvement")
# Growth insights
if "growth" in trends:
if "Strong" in trends["growth"]:
insights.append("POSITIVE: Strong revenue growth trend")
elif "Declining" in trends["growth"]:
insights.append("WATCH: Revenue growth is slowing")
return insights
def analyze_financials(self, balance_sheet_file, income_stmt_file):
"""Main analysis function"""
try:
# Read files
balance_sheet_df = pd.read_csv(balance_sheet_file)
income_stmt_df = pd.read_csv(income_stmt_file)
# Calculate ratios
ratios = self.calculate_ratios(balance_sheet_df, income_stmt_df)
# Analyze trends
trends = self.analyze_trends(ratios)
# Generate insights
insights = self.generate_insights(ratios, trends)
# Prepare comprehensive analysis
analysis = {
"Financial Ratios": ratios,
"Trend Analysis": trends,
"Key Insights": insights,
"Summary": {
"Latest Year Analysis": {
"Current Ratio": f"{ratios[max(ratios.keys())]['liquidity']['current_ratio']:.2f}",
"Net Margin": f"{ratios[max(ratios.keys())]['profitability']['net_margin']:.2%}",
"Revenue Growth": f"{ratios[max(ratios.keys())]['growth']['revenue_growth']:.2f}%" if ratios[max(ratios.keys())]['growth']['revenue_growth'] else "N/A"
}
}
}
return json.dumps(analysis, indent=2)
except Exception as e:
return f"Error in analysis: {str(e)}"
def create_interface():
analyzer = FastFinancialAnalyzer()
iface = gr.Interface(
fn=analyzer.analyze_financials,
inputs=[
gr.File(label="Balance Sheet (CSV)", type="filepath"),
gr.File(label="Income Statement (CSV)", type="filepath")
],
outputs=gr.Textbox(label="Analysis Results", lines=20),
title="Fast Financial Statement Analyzer",
description="Upload financial statements for instant analysis with ratio calculations and trend detection."
)
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch() |