Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import json | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import re | |
class FinancialAnalyzer: | |
def __init__(self): | |
print("Initializing Analyzer...") | |
self.initialize_model() | |
print("Initialization complete!") | |
def initialize_model(self): | |
"""Initialize TinyLlama model""" | |
try: | |
self.tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
self.model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") | |
self.model.eval() | |
except Exception as e: | |
print(f"Error initializing model: {str(e)}") | |
raise | |
def clean_number(self, value): | |
"""Clean and convert numerical values""" | |
try: | |
if isinstance(value, str): | |
# Remove currency symbols, commas, spaces | |
value = value.replace('$', '').replace(',', '').strip() | |
# Handle parentheses for negative numbers | |
if '(' in value and ')' in value: | |
value = '-' + value.replace('(', '').replace(')', '') | |
return float(value or 0) | |
except: | |
return 0.0 | |
def is_valid_markdown(self, file_path): | |
"""Check if a file is a valid Markdown file""" | |
try: | |
with open(file_path, 'r') as f: | |
content = f.read() | |
# Simple check for Markdown structure | |
return any(line.startswith('#') or '|' in line for line in content.split('\n')) | |
except: | |
return False | |
def parse_financial_data(self, content): | |
"""Parse markdown content into structured data""" | |
try: | |
data = {} | |
current_section = "" | |
current_table = [] | |
headers = None | |
for line in content.split('\n'): | |
if line.startswith('#'): | |
if current_table and headers: | |
data[current_section] = self.process_table(headers, current_table) | |
current_section = line.strip('# ') | |
current_table = [] | |
headers = None | |
elif '|' in line: | |
if '-|-' not in line: # Skip separator lines | |
row = [cell.strip() for cell in line.split('|')[1:-1]] | |
if not headers: | |
headers = row | |
else: | |
current_table.append(row) | |
# Process last table | |
if current_table and headers: | |
data[current_section] = self.process_table(headers, current_table) | |
return data | |
except Exception as e: | |
print(f"Error parsing financial data: {str(e)}") | |
return {} | |
def process_table(self, headers, rows): | |
"""Process table data into structured format""" | |
try: | |
processed_data = {} | |
for row in rows: | |
if len(row) == len(headers): | |
item_name = row[0].strip('*').strip() | |
processed_data[item_name] = {} | |
for i, value in enumerate(row[1:], 1): | |
processed_data[item_name][headers[i]] = self.clean_number(value) | |
return processed_data | |
except Exception as e: | |
print(f"Error processing table: {str(e)}") | |
return {} | |
def extract_metrics(self, income_data, balance_data): | |
"""Extract and calculate key financial metrics""" | |
try: | |
metrics = { | |
"Revenue": { | |
"2025": self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2025"), | |
"2021": self.get_nested_value(income_data, "Revenue", "Total Net Revenue", "2021") | |
}, | |
"Profitability": { | |
"Gross_Profit_2025": self.get_nested_value(income_data, "Cost and Gross Profit", "Gross Profit", "2025"), | |
"Net_Earnings_2025": self.get_nested_value(income_data, "Profit Summary", "Net Earnings", "2025"), | |
"Operating_Expenses_2025": self.get_nested_value(income_data, "Operating Expenses", "Total Operating Expenses", "2025") | |
}, | |
"Balance_Sheet": { | |
"Total_Assets_2025": self.get_nested_value(balance_data, "Key Totals", "Total_Assets", "2025"), | |
"Total_Liabilities_2025": self.get_nested_value(balance_data, "Key Totals", "Total_Liabilities", "2025"), | |
"Equity_2025": self.get_nested_value(balance_data, "Key Totals", "Total_Shareholders_Equity", "2025") | |
} | |
} | |
# Calculate additional metrics | |
revenue_2025 = metrics["Revenue"]["2025"] | |
if revenue_2025 != 0: | |
metrics["Profitability"]["Gross_Margin"] = (metrics["Profitability"]["Gross_Profit_2025"] / revenue_2025) * 100 | |
metrics["Profitability"]["Net_Margin"] = (metrics["Profitability"]["Net_Earnings_2025"] / revenue_2025) * 100 | |
return metrics | |
except Exception as e: | |
print(f"Error extracting metrics: {str(e)}") | |
return {} | |
def get_nested_value(self, data, section, key, year): | |
"""Safely get nested dictionary value""" | |
try: | |
return data.get(section, {}).get(key, {}).get(year, 0) | |
except: | |
return 0 | |
def generate_analysis_prompt(self, metrics): | |
"""Create analysis prompt from metrics""" | |
try: | |
return f"""<human> | |
Analyze these financial metrics for 2025 with a focus on business performance, trends, and risks: | |
Revenue and Profitability: | |
- Total Revenue: ${metrics['Revenue']['2025']:,.1f}M | |
- Gross Profit: ${metrics['Profitability']['Gross_Profit_2025']:,.1f}M | |
- Net Earnings: ${metrics['Profitability']['Net_Earnings_2025']:,.1f}M | |
- Gross Margin: {metrics['Profitability'].get('Gross_Margin', 0):,.1f}% | |
- Net Margin: {metrics['Profitability'].get('Net_Margin', 0):,.1f}% | |
Balance Sheet Strength: | |
- Total Assets: ${metrics['Balance_Sheet']['Total_Assets_2025']:,.1f}M | |
- Total Liabilities: ${metrics['Balance_Sheet']['Total_Liabilities_2025']:,.1f}M | |
- Shareholders' Equity: ${metrics['Balance_Sheet']['Equity_2025']:,.1f}M | |
Explain key financial ratios and their implications. Discuss strategies for growth and risk mitigation. | |
</human>""" | |
except Exception as e: | |
print(f"Error generating prompt: {str(e)}") | |
return "" | |
def generate_analysis(self, prompt): | |
"""Generate analysis using TinyLlama""" | |
try: | |
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1500) | |
outputs = self.model.generate( | |
inputs["input_ids"], | |
max_new_tokens=500, # Generate up to 500 new tokens | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
pad_token_id=self.tokenizer.eos_token_id, | |
no_repeat_ngram_size=3 | |
) | |
analysis = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Clean up the response | |
analysis = analysis.split("<human>")[-1].strip() | |
return analysis | |
except Exception as e: | |
return f"Error generating analysis: {str(e)}" | |
def analyze_financials(self, balance_sheet_file, income_stmt_file): | |
"""Main analysis function""" | |
try: | |
# Validate files | |
if not (self.is_valid_markdown(balance_sheet_file) and self.is_valid_markdown(income_stmt_file)): | |
return "Error: One or both files are invalid or not in Markdown format." | |
# Read files | |
with open(balance_sheet_file, 'r') as f: | |
balance_sheet = f.read() | |
with open(income_stmt_file, 'r') as f: | |
income_stmt = f.read() | |
# Parse financial data | |
income_data = self.parse_financial_data(income_stmt) | |
balance_data = self.parse_financial_data(balance_sheet) | |
# Extract key metrics | |
metrics = self.extract_metrics(income_data, balance_data) | |
# Generate and get analysis | |
prompt = self.generate_analysis_prompt(metrics) | |
analysis = self.generate_analysis(prompt) | |
# Prepare results | |
results = { | |
"Financial Analysis": { | |
"Key Metrics": metrics, | |
"AI Insights": analysis, | |
"Analysis Period": "2021-2025", | |
"Note": "All monetary values in millions ($M)" | |
} | |
} | |
return json.dumps(results, indent=2) | |
except Exception as e: | |
return f"Error in analysis: {str(e)}\n\nDetails: {type(e).__name__}" | |
def create_interface(): | |
analyzer = FinancialAnalyzer() | |
iface = gr.Interface( | |
fn=analyzer.analyze_financials, | |
inputs=[ | |
gr.File(label="Balance Sheet (Markdown)", type="filepath"), | |
gr.File(label="Income Statement (Markdown)", type="filepath") | |
], | |
outputs=gr.Textbox(label="Analysis Results", lines=25), | |
title="Financial Statement Analyzer", | |
description="Upload financial statements in Markdown format for AI-powered analysis" | |
) | |
return iface | |
if __name__ == "__main__": | |
iface = create_interface() | |
iface.launch() | |