Upload 2 files
Browse files- medgemma_space.py +182 -0
- requirements_txt.txt +7 -0
medgemma_space.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py - Main Gradio application
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Model configuration
|
9 |
+
MODEL_ID = "google/medgemma-4b-it"
|
10 |
+
|
11 |
+
# Load model and processor
|
12 |
+
@gr.utils.async_wrapper
|
13 |
+
def load_model():
|
14 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
15 |
+
MODEL_ID,
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
+
device_map="auto",
|
18 |
+
trust_remote_code=True
|
19 |
+
)
|
20 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
21 |
+
return model, processor
|
22 |
+
|
23 |
+
# Initialize model (this will be cached)
|
24 |
+
model, processor = load_model()
|
25 |
+
|
26 |
+
def analyze_medical_image(image, clinical_question, patient_history=""):
|
27 |
+
"""
|
28 |
+
Analyze medical image with clinical context
|
29 |
+
"""
|
30 |
+
if image is None:
|
31 |
+
return "Please upload an image first."
|
32 |
+
|
33 |
+
# Prepare the conversation
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "system",
|
37 |
+
"content": [{"type": "text", "text": "You are an expert medical AI assistant. Provide detailed analysis while emphasizing that this is for educational purposes only and should not replace professional medical diagnosis."}]
|
38 |
+
}
|
39 |
+
]
|
40 |
+
|
41 |
+
# Add patient history if provided
|
42 |
+
if patient_history.strip():
|
43 |
+
messages.append({
|
44 |
+
"role": "user",
|
45 |
+
"content": [{"type": "text", "text": f"Patient History: {patient_history}"}]
|
46 |
+
})
|
47 |
+
|
48 |
+
# Add the main question with image
|
49 |
+
user_content = [{"type": "text", "text": clinical_question}]
|
50 |
+
if image:
|
51 |
+
user_content.append({"type": "image", "image": image})
|
52 |
+
|
53 |
+
messages.append({
|
54 |
+
"role": "user",
|
55 |
+
"content": user_content
|
56 |
+
})
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Process inputs
|
60 |
+
inputs = processor.apply_chat_template(
|
61 |
+
messages,
|
62 |
+
add_generation_prompt=True,
|
63 |
+
tokenize=True,
|
64 |
+
return_dict=True,
|
65 |
+
return_tensors="pt"
|
66 |
+
).to(model.device, dtype=torch.bfloat16)
|
67 |
+
|
68 |
+
input_len = inputs["input_ids"].shape[-1]
|
69 |
+
|
70 |
+
# Generate response
|
71 |
+
with torch.inference_mode():
|
72 |
+
generation = model.generate(
|
73 |
+
**inputs,
|
74 |
+
max_new_tokens=1000,
|
75 |
+
do_sample=True,
|
76 |
+
temperature=0.7,
|
77 |
+
top_p=0.9
|
78 |
+
)
|
79 |
+
generation = generation[0][input_len:]
|
80 |
+
|
81 |
+
# Decode response
|
82 |
+
response = processor.decode(generation, skip_special_tokens=True)
|
83 |
+
|
84 |
+
# Add disclaimer
|
85 |
+
disclaimer = "\n\n⚠️ IMPORTANT DISCLAIMER: This analysis is for educational and research purposes only. Always consult qualified healthcare professionals for medical diagnosis and treatment decisions."
|
86 |
+
|
87 |
+
return response + disclaimer
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return f"Error processing request: {str(e)}"
|
91 |
+
|
92 |
+
# Create Gradio interface
|
93 |
+
def create_interface():
|
94 |
+
with gr.Blocks(title="MedGemma Medical Image Analysis", theme=gr.themes.Soft()) as demo:
|
95 |
+
gr.Markdown("""
|
96 |
+
# 🏥 MedGemma Medical Image Analysis
|
97 |
+
|
98 |
+
**Educational Medical AI Assistant powered by Google's MedGemma-4B**
|
99 |
+
|
100 |
+
⚠️ **Important**: This tool is for educational and research purposes only.
|
101 |
+
Do not use real patient data. Always consult healthcare professionals for medical decisions.
|
102 |
+
""")
|
103 |
+
|
104 |
+
with gr.Row():
|
105 |
+
with gr.Column(scale=1):
|
106 |
+
image_input = gr.Image(
|
107 |
+
label="Medical Image",
|
108 |
+
type="pil",
|
109 |
+
height=400
|
110 |
+
)
|
111 |
+
|
112 |
+
clinical_question = gr.Textbox(
|
113 |
+
label="Clinical Question",
|
114 |
+
placeholder="e.g., 'Describe the findings in this chest X-ray' or 'What pathological changes do you observe?'",
|
115 |
+
lines=3
|
116 |
+
)
|
117 |
+
|
118 |
+
patient_history = gr.Textbox(
|
119 |
+
label="Patient History (Optional)",
|
120 |
+
placeholder="e.g., '45-year-old male with chronic cough and shortness of breath'",
|
121 |
+
lines=3
|
122 |
+
)
|
123 |
+
|
124 |
+
analyze_btn = gr.Button("🔍 Analyze Image", variant="primary", size="lg")
|
125 |
+
|
126 |
+
with gr.Column(scale=1):
|
127 |
+
output = gr.Textbox(
|
128 |
+
label="Medical Analysis",
|
129 |
+
lines=20,
|
130 |
+
max_lines=30
|
131 |
+
)
|
132 |
+
|
133 |
+
# Example cases
|
134 |
+
gr.Markdown("## 📋 Example Cases")
|
135 |
+
|
136 |
+
examples = gr.Examples(
|
137 |
+
examples=[
|
138 |
+
[
|
139 |
+
"https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png",
|
140 |
+
"Describe the findings in this chest X-ray and identify any abnormalities.",
|
141 |
+
"Adult patient with respiratory symptoms"
|
142 |
+
],
|
143 |
+
[
|
144 |
+
None, # User will upload their own
|
145 |
+
"What pathological changes are visible in this medical image?",
|
146 |
+
""
|
147 |
+
],
|
148 |
+
[
|
149 |
+
None,
|
150 |
+
"Provide a differential diagnosis based on the imaging findings.",
|
151 |
+
"Patient presenting with acute symptoms"
|
152 |
+
]
|
153 |
+
],
|
154 |
+
inputs=[image_input, clinical_question, patient_history]
|
155 |
+
)
|
156 |
+
|
157 |
+
# Event handlers
|
158 |
+
analyze_btn.click(
|
159 |
+
fn=analyze_medical_image,
|
160 |
+
inputs=[image_input, clinical_question, patient_history],
|
161 |
+
outputs=output
|
162 |
+
)
|
163 |
+
|
164 |
+
# Footer
|
165 |
+
gr.Markdown("""
|
166 |
+
---
|
167 |
+
**Data Privacy Notice**: Do not upload real patient data or personally identifiable information.
|
168 |
+
Use only synthetic, anonymized, or publicly available medical images for demonstration purposes.
|
169 |
+
|
170 |
+
**Model**: Google MedGemma-4B | **Purpose**: Educational and Research Use Only
|
171 |
+
""")
|
172 |
+
|
173 |
+
return demo
|
174 |
+
|
175 |
+
# Launch the app
|
176 |
+
if __name__ == "__main__":
|
177 |
+
demo = create_interface()
|
178 |
+
demo.launch(
|
179 |
+
server_name="0.0.0.0",
|
180 |
+
server_port=7860,
|
181 |
+
share=True
|
182 |
+
)
|
requirements_txt.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
transformers>=4.40.0
|
3 |
+
gradio>=4.0.0
|
4 |
+
Pillow>=9.0.0
|
5 |
+
accelerate>=0.20.0
|
6 |
+
requests>=2.28.0
|
7 |
+
numpy>=1.21.0
|