# app.py - Main Gradio application import gradio as gr import torch from transformers import AutoProcessor, AutoModelForImageTextToText from PIL import Image import os import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Model configuration MODEL_ID = "google/medgemma-4b-it" # Global variables for model and processor model = None processor = None def load_model(): """Load model and processor with error handling""" global model, processor try: logger.info(f"Loading model: {MODEL_ID}") # Check if CUDA is available device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device}") # Load model with appropriate settings for Spaces model = AutoModelForImageTextToText.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, device_map="auto" if device == "cuda" else None, trust_remote_code=True, low_cpu_mem_usage=True ) processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) logger.info("Model loaded successfully!") return True except Exception as e: logger.error(f"Error loading model: {str(e)}") return False # Initialize model at startup model_loaded = load_model() def analyze_medical_image(image, clinical_question, patient_history=""): """ Analyze medical image with clinical context """ global model, processor # Check if model is loaded if not model_loaded or model is None or processor is None: return "❌ Model not loaded. Please try refreshing the page or contact support." if image is None: return "⚠️ Please upload a medical image first." if not clinical_question.strip(): return "⚠️ Please provide a clinical question." try: # Prepare the conversation with proper medical context messages = [ { "role": "system", "content": [{"type": "text", "text": "You are MedGemma, an expert medical AI assistant specialized in medical image analysis. Provide detailed, structured analysis while emphasizing that this is for educational purposes only and should not replace professional medical diagnosis. Be thorough but clear in your explanations."}] } ] # Build user message content user_content = [] # Add patient history if provided if patient_history.strip(): user_content.append({"type": "text", "text": f"Patient History: {patient_history}\n\n"}) # Add the clinical question user_content.append({"type": "text", "text": f"Clinical Question: {clinical_question}"}) # Add the image user_content.append({"type": "image", "image": image}) messages.append({ "role": "user", "content": user_content }) # Process inputs inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ) # Move to appropriate device device = next(model.parameters()).device dtype = next(model.parameters()).dtype inputs = {k: v.to(device) for k, v in inputs.items()} input_len = inputs["input_ids"].shape[-1] # Generate response with appropriate settings with torch.inference_mode(): generation = model.generate( **inputs, max_new_tokens=1500, do_sample=True, temperature=0.3, # Lower temperature for more focused medical analysis top_p=0.95, repetition_penalty=1.1, pad_token_id=processor.tokenizer.eos_token_id ) generation = generation[0][input_len:] # Decode response response = processor.decode(generation, skip_special_tokens=True) # Clean up response response = response.strip() # Add structured disclaimer disclaimer = """ --- ### ⚠️ MEDICAL DISCLAIMER **This analysis is for educational and research purposes only.** - This AI assistant is not a substitute for professional medical advice - Always consult qualified healthcare professionals for diagnosis and treatment - Do not make medical decisions based solely on this analysis - In case of medical emergency, contact emergency services immediately --- """ return response + disclaimer except Exception as e: logger.error(f"Error in analyze_medical_image: {str(e)}") return f"❌ Error processing request: {str(e)}\n\nPlease try again or contact support if the issue persists." # Create Gradio interface def create_interface(): with gr.Blocks( title="MedGemma Medical Image Analysis", theme=gr.themes.Soft(), css=""" .gradio-container { max-width: 1200px !important; } .disclaimer { background-color: #fef2f2; border: 1px solid #fecaca; border-radius: 8px; padding: 16px; margin: 16px 0; } """ ) as demo: # Header gr.Markdown(""" # 🏥 MedGemma Medical Image Analysis **Advanced Medical AI Assistant powered by Google's MedGemma-4B** This tool can analyze various medical imaging modalities including: - 🫁 **Chest X-rays** - Pneumonia, COVID-19, lung pathology - 🧠 **CT Scans** - Brain, chest, abdomen imaging - 🔬 **Histopathology** - Microscopic tissue analysis - 👁️ **Ophthalmology** - Retinal imaging, eye conditions - 🩺 **Dermatology** - Skin lesions and conditions """) # Warning banner with gr.Row(): gr.Markdown("""