File size: 30,012 Bytes
c6a232e cfb8694 699420d 13f19ce 699420d cfb8694 699420d cfb8694 87e38ae cfb8694 13f19ce cfb8694 7265b7e cfb8694 87e38ae cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 13f19ce 699420d cfb8694 699420d cfb8694 13f19ce 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 ce18b01 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d 13f19ce cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d 7265b7e cfb8694 699420d 7265b7e cfb8694 699420d 7265b7e 699420d 7265b7e 699420d 7265b7e 699420d 7265b7e 699420d 7265b7e 699420d cfb8694 7265b7e cfb8694 699420d cfb8694 699420d cfb8694 699420d cfb8694 699420d 13f19ce 699420d c6a232e 699420d 13f19ce 699420d 13f19ce 699420d 13f19ce 699420d c6a232e d3c50a6 699420d c6a232e d3c50a6 c6a232e d3c50a6 699420d c6a232e 699420d cfb8694 699420d 13f19ce 699420d cfb8694 699420d 13f19ce 699420d 13f19ce 699420d cfb8694 13f19ce cfb8694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
# Suppress TensorFlow warnings
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Import with error handling
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import json
from PIL import Image
from typing import Dict, List, Tuple, Optional
import warnings
warnings.filterwarnings('ignore')
# Optional imports with fallbacks
try:
import librosa
import librosa.display
LIBROSA_AVAILABLE = True
print("β
Librosa loaded successfully")
except ImportError:
print("β οΈ Warning: librosa not available. Audio processing will be limited.")
LIBROSA_AVAILABLE = False
try:
import tensorflow as tf
# Suppress TF warnings
tf.get_logger().setLevel('ERROR')
TF_AVAILABLE = True
print("β
TensorFlow loaded successfully")
except ImportError:
print("β οΈ Warning: TensorFlow not available. Using mock predictions.")
TF_AVAILABLE = False
try:
import google.generativeai as genai
GEMINI_AVAILABLE = True
print("β
Google Generative AI loaded successfully")
except ImportError:
print("β οΈ Warning: google-generativeai not available. AI features will be limited.")
GEMINI_AVAILABLE = False
# Configure Gemini AI with error handling
if GEMINI_AVAILABLE and os.getenv("GOOGLE_API_KEY"):
try:
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
gemini_model = genai.GenerativeModel('gemini-2.0-flash')
except Exception as e:
print(f"Warning: Failed to initialize Gemini: {e}")
GEMINI_AVAILABLE = False
gemini_model = None
else:
gemini_model = None
# Load the pre-trained ResNet model with error handling
def load_heartbeat_model():
if not TF_AVAILABLE:
print("π TensorFlow not available - using mock predictions")
return None
try:
model = tf.keras.models.load_model('Heart_ResNet.h5')
print("π― Heart_ResNet.h5 model loaded successfully")
return model
except Exception as e:
print(f"π Could not load Heart_ResNet.h5 model: {e}")
print("π Using mock predictions instead")
return None
# Initialize model (removed @gr.utils.cache decorator)
heartbeat_model = None
def get_heartbeat_model():
"""Get or load the heartbeat model (lazy loading)"""
global heartbeat_model
if heartbeat_model is None:
heartbeat_model = load_heartbeat_model()
return heartbeat_model
# Global storage for patient data (in production, use a proper database)
patient_data = {}
def process_audio(file_path: str) -> Tuple[np.ndarray, np.ndarray, int]:
"""Process audio file and extract MFCC features."""
if not LIBROSA_AVAILABLE:
print("Librosa not available - cannot process audio")
return None, None, None
SAMPLE_RATE = 22050
DURATION = 10
input_length = int(SAMPLE_RATE * DURATION)
try:
X, sr = librosa.load(file_path, sr=SAMPLE_RATE, duration=DURATION)
if len(X) < input_length:
pad_width = input_length - len(X)
X = np.pad(X, (0, pad_width), mode='constant')
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sr, n_mfcc=52,
n_fft=512, hop_length=256).T, axis=0)
return mfccs, X, sr
except Exception as e:
print(f"Error processing audio: {e}")
return None, None, None
def analyze_heartbeat(audio_file) -> Tuple[str, str]:
"""Analyze heartbeat audio and return results with visualization."""
if audio_file is None:
return "No audio file provided", None
if not LIBROSA_AVAILABLE:
return "Audio processing not available (librosa not installed)", None
try:
mfccs, waveform, sr = process_audio(audio_file)
if mfccs is None:
return "Error processing audio file", None
# Get model lazily
model = get_heartbeat_model()
if model is not None and TF_AVAILABLE:
features = mfccs.reshape(1, 52, 1)
preds = model.predict(features, verbose=0) # Suppress prediction output
class_names = ["artifact", "murmur", "normal"]
# Convert to percentages and round to nearest 0.1
results = {name: round(float(preds[0][i]) * 100, 1) for i, name in enumerate(class_names)}
else:
# Mock results for demonstration
import random
random.seed(42) # For consistent demo results
results = {
"artifact": round(random.uniform(0.5, 2.5), 1),
"murmur": round(random.uniform(1.5, 3.5), 1),
"normal": round(random.uniform(94.0, 98.0), 1)
}
# Ensure they sum to 100.0
total = sum(results.values())
if total != 100.0:
# Adjust the largest value to make sum exactly 100.0
max_key = max(results, key=results.get)
results[max_key] = round(results[max_key] + (100.0 - total), 1)
# Create waveform visualization
fig, ax = plt.subplots(figsize=(12, 4))
if LIBROSA_AVAILABLE:
librosa.display.waveshow(waveform, sr=sr, ax=ax)
else:
# Simple plot if librosa.display not available
time_axis = np.linspace(0, len(waveform)/sr, len(waveform))
ax.plot(time_axis, waveform)
ax.set_title("Heartbeat Waveform Analysis", fontsize=14, fontweight='bold')
ax.set_xlabel("Time (seconds)")
ax.set_ylabel("Amplitude")
ax.grid(True, alpha=0.3)
plt.tight_layout()
# Save plot
plot_path = f"temp_waveform_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
plt.savefig(plot_path, dpi=150, bbox_inches='tight')
plt.close()
# Determine primary classification
max_class = max(results, key=results.get)
confidence = results[max_class]
# Status and interpretation
status = "Model-based analysis" if model else "Demo mode (model not loaded)"
if max_class == "normal" and confidence >= 90.0:
interpretation = "β
Normal heartbeat detected"
elif max_class == "murmur" and confidence >= 70.0:
interpretation = "β οΈ Heart murmur detected - recommend medical evaluation"
elif max_class == "artifact" and confidence >= 50.0:
interpretation = "π Audio artifact detected - consider re-recording"
else:
interpretation = "β Inconclusive result - recommend professional evaluation"
# Format results as text
results_text = f"""π©Ί HEART SOUNDS ANALYSIS RESULTS
{'='*45}
π Classification Probabilities:
β’ Normal Heartbeat: {results['normal']}%
β’ Heart Murmur: {results['murmur']}%
β’ Audio Artifact: {results['artifact']}%
π― Primary Classification: {max_class.upper()} ({confidence}%)
π Interpretation: {interpretation}
π Analysis Status: {status}
π Audio Duration: {len(waveform)/sr:.1f} seconds
π Sample Rate: {sr} Hz
β οΈ Note: This analysis is for educational purposes only.
Always consult a qualified healthcare professional."""
return results_text, plot_path
except Exception as e:
return f"Error analyzing heartbeat: {str(e)}", None
def analyze_medical_image(image) -> str:
"""Analyze medical images using Gemini Vision."""
if image is None:
return "No image provided"
if not GEMINI_AVAILABLE or gemini_model is None:
return """π¬ MEDICAL IMAGE ANALYSIS
{'='*40}
β οΈ AI Analysis Not Available
Gemini AI is not configured or installed.
π MOCK ANALYSIS REPORT:
ββββββββββββββββββββββββββββββββββββββββ
π₯ Investigation Type: Medical Image/Scan
π Image Quality: Acceptable for review
π General Findings: Image appears to show medical investigation
π RECOMMENDATIONS:
β’ Ensure proper medical interpretation by qualified radiologist
β’ Correlate findings with clinical presentation
β’ Consider additional imaging if clinically indicated
β’ Follow institutional protocols for image review
β οΈ IMPORTANT: This is a demonstration mode.
To enable full AI analysis:
1. Install: pip install google-generativeai
2. Set environment variable: GOOGLE_API_KEY
3. Restart the application
π©Ί Always consult qualified healthcare professionals for medical interpretation."""
try:
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
prompt = """
As a medical AI assistant, analyze this medical image/investigation result. Please provide a structured report with:
1. IMAGE TYPE & QUALITY:
- Type of investigation/scan
- Image quality assessment
2. TECHNICAL PARAMETERS:
- Visible technical details
- Imaging modality characteristics
3. ANATOMICAL STRUCTURES:
- Clearly visible structures
- Anatomical landmarks
4. FINDINGS:
- Normal findings
- Any abnormalities or areas of concern
- Measurements if applicable
5. CLINICAL CORRELATION:
- Significance of findings
- Recommendations for follow-up
6. LIMITATIONS:
- Any limitations of the study
- Areas requiring further evaluation
Please format your response professionally and remember this is for educational purposes only. Emphasize that this should not replace professional medical diagnosis by qualified healthcare professionals.
"""
response = gemini_model.generate_content([prompt, image])
formatted_response = f"""π¬ AI MEDICAL IMAGE ANALYSIS
{'='*45}
{response.text}
{'='*45}
β οΈ DISCLAIMER: This AI analysis is for educational purposes only.
Always consult qualified healthcare professionals for definitive diagnosis."""
return formatted_response
except Exception as e:
return f"π¨ Error analyzing image: {str(e)}\n\nPlease check your Gemini API configuration and try again."
def generate_comprehensive_assessment(patient_info: Dict) -> str:
"""Generate comprehensive medical assessment using Gemini AI."""
if not GEMINI_AVAILABLE or gemini_model is None:
# Calculate BMI if height and weight available
bmi_info = ""
if patient_info.get('weight') and patient_info.get('height'):
try:
weight = float(patient_info.get('weight'))
height = float(patient_info.get('height')) / 100 # Convert cm to m
bmi = weight / (height * height)
bmi_info = f"BMI: {bmi:.1f} kg/mΒ²"
except:
bmi_info = "BMI: Unable to calculate"
return f"""# π₯ COMPREHENSIVE MEDICAL ASSESSMENT
## π€ PATIENT DEMOGRAPHICS
**Name:** {patient_info.get('name', 'Not provided')}
**Age:** {patient_info.get('age', 'Not provided')} years
**Sex:** {patient_info.get('sex', 'Not provided')}
**Weight:** {patient_info.get('weight', 'Not provided')} kg
**Height:** {patient_info.get('height', 'Not provided')} cm
{bmi_info}
---
## π©Ί CLINICAL PRESENTATION
### Chief Complaint
{patient_info.get('complaint', 'Not provided')}
### Medical History
{patient_info.get('medical_history', 'Not provided')}
### Physical Examination
{patient_info.get('examination', 'Not provided')}
---
## π¬ DIAGNOSTIC RESULTS
### Heart Sounds Analysis
{patient_info.get('heartbeat_analysis', 'Not performed')}
### Investigations
{patient_info.get('investigation_analysis', 'Not provided')}
---
## β οΈ SYSTEM STATUS
**AI-powered comprehensive assessment not available.**
Please install google-generativeai and configure GOOGLE_API_KEY for full AI features.
---
## π BASIC RECOMMENDATIONS
1. **Immediate:** Review all clinical findings with qualified healthcare professional
2. **Assessment:** Correlate examination findings with investigation results
3. **Follow-up:** Consider appropriate follow-up based on clinical presentation
4. **Documentation:** Ensure proper documentation and patient safety protocols
---
## π GENERAL NUTRITION GUIDELINES
- **Hydration:** Maintain adequate fluid intake (8-10 glasses water/day)
- **Balanced Diet:** Include fruits, vegetables, whole grains, lean proteins
- **Heart Health:** Limit sodium, saturated fats, processed foods
- **Portion Control:** Maintain healthy portion sizes based on BMI
---
**β οΈ DISCLAIMER:** This assessment is for educational purposes only. Always consult qualified healthcare professionals for medical decisions."""
try:
# Calculate BMI if available
bmi_calculation = ""
if patient_info.get('weight') and patient_info.get('height'):
try:
weight = float(patient_info.get('weight'))
height = float(patient_info.get('height')) / 100 # Convert cm to m
bmi = weight / (height * height)
if bmi < 18.5:
bmi_status = "Underweight"
elif 18.5 <= bmi < 25:
bmi_status = "Normal weight"
elif 25 <= bmi < 30:
bmi_status = "Overweight"
else:
bmi_status = "Obese"
bmi_calculation = f"BMI: {bmi:.1f} kg/mΒ² ({bmi_status})"
except:
bmi_calculation = "BMI: Unable to calculate"
# Prepare enhanced prompt with nutrition requirements
prompt = f"""
**As a comprehensive medical AI, provide a detailed professional medical assessment based on the following patient data**
Format your response with clear headings and professional medical language:
## PATIENT DEMOGRAPHICS:
-**Name:** {patient_info.get('name', 'Not provided')}
- **Age:** {patient_info.get('age', 'Not provided')} years
- **Sex:** {patient_info.get('sex', 'Not provided')}
- **Weight:** {patient_info.get('weight', 'Not provided')} kg
- **Height:** {patient_info.get('height', 'Not provided')} cm
- {bmi_calculation}
## CHIEF COMPLAINT:
{patient_info.get('complaint', 'Not provided')}
## MEDICAL HISTORY:
{patient_info.get('medical_history', 'Not provided')}
## PHYSICAL EXAMINATION:
{patient_info.get('examination', 'Not provided')}
## HEART SOUNDS ANALYSIS:
{patient_info.get('heartbeat_analysis', 'Not performed')}
## INVESTIGATIONS:
{patient_info.get('investigation_analysis', 'Not provided')}
Please provide a comprehensive medical assessment with the following structure:
1. **CLINICAL SUMMARY** - Concise overview of the case
2. **DIFFERENTIAL DIAGNOSIS** - List possible conditions with rationale
3. **RISK FACTORS ASSESSMENT** - Identify relevant risk factors
4. **RECOMMENDED TREATMENT PLAN** - Detailed treatment approach
5. **FOLLOW-UP RECOMMENDATIONS** - Specific follow-up plans
6. **NUTRITIONAL MANAGEMENT PLAN** - summerized nutrition recommendations based on:
- Patient's current condition
- Age and sex-specific requirements
- Weight management if needed
- Heart health considerations
- Specific dietary modifications for the condition
- Meal planning suggestions
- Hydration recommendations
7. **PATIENT EDUCATION POINTS** - Key points for patient understanding
8. **PROGNOSIS** - Expected outcomes and timeline
Please use professional medical terminology and format with clear headings.
Make the nutritional section comprehensive and specific to this patient's needs.
Remember this is for educational purposes and emphasize the need for professional medical consultation.
"""
response = gemini_model.generate_content(prompt)
# Format the response with better styling
formatted_response = f"""# π₯ COMPREHENSIVE MEDICAL ASSESSMENT
## π€ PATIENT INFORMATION
**Name:** {patient_info.get('name', 'Not provided')}
**Age:** {patient_info.get('age', 'Not provided')} years
**Sex:** {patient_info.get('sex', 'Not provided')}
**Weight:** {patient_info.get('weight', 'Not provided')} kg
**Height:** {patient_info.get('height', 'Not provided')} cm
**{bmi_calculation}**
---
{response.text}
---
## β οΈ IMPORTANT DISCLAIMERS
- **Educational Purpose:** This assessment is for educational purposes only
- **Professional Consultation:** Always consult qualified healthcare professionals
- **Emergency:** Seek immediate medical attention for urgent symptoms
- **AI Limitations:** AI analysis supplements but does not replace clinical judgment
---
**Generated on:** {datetime.now().strftime('%Y-%m-%d at %H:%M:%S')}"""
return formatted_response
except Exception as e:
return f"# β Error Generating Assessment\n\n**Error Details:** {str(e)}\n\nPlease check your Gemini API configuration and try again."
def save_patient_data(name, age, sex, weight, height, complaint, medical_history,
examination, heartbeat_results, investigation_analysis):
"""Save all patient data to global storage."""
global patient_data
patient_data = {
'name': name if name else 'Not provided',
'age': age if age else 'Not provided',
'sex': sex if sex else 'Not provided',
'weight': weight if weight else 'Not provided',
'height': height if height else 'Not provided',
'complaint': complaint if complaint else 'Not provided',
'medical_history': medical_history if medical_history else 'Not provided',
'examination': examination if examination else 'Not provided',
'heartbeat_analysis': heartbeat_results if heartbeat_results else 'Not performed',
'investigation_analysis': investigation_analysis if investigation_analysis else 'Not provided',
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
return "Patient data saved successfully!"
def process_complete_consultation(name, age, sex, weight, height, complaint,
medical_history, examination, audio_file,
investigation_image):
"""Process complete medical consultation."""
# Analyze heartbeat if audio provided
heartbeat_results = ""
waveform_plot = None
if audio_file is not None:
heartbeat_analysis, plot_path = analyze_heartbeat(audio_file)
heartbeat_results = heartbeat_analysis if heartbeat_analysis else ""
waveform_plot = plot_path
# Analyze investigation image if provided
investigation_analysis = ""
if investigation_image is not None:
investigation_analysis = analyze_medical_image(investigation_image)
# Create patient data dictionary with proper handling
patient_data_dict = {
'name': name if name else 'Not provided',
'age': age if age else 'Not provided',
'sex': sex if sex else 'Not provided',
'weight': weight if weight else 'Not provided',
'height': height if height else 'Not provided',
'complaint': complaint if complaint else 'Not provided',
'medical_history': medical_history if medical_history else 'Not provided',
'examination': examination if examination else 'Not provided',
'heartbeat_analysis': heartbeat_results if heartbeat_results else 'Not performed',
'investigation_analysis': investigation_analysis if investigation_analysis else 'Not provided'
}
# Save patient data to global variable
global patient_data
patient_data = patient_data_dict.copy()
patient_data['timestamp'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# Generate comprehensive assessment
comprehensive_assessment = generate_comprehensive_assessment(patient_data_dict)
return comprehensive_assessment, waveform_plot, heartbeat_results, investigation_analysis
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="Comprehensive Medical Consultation System",
theme=gr.themes.Soft(),
css="""
.medical-assessment textarea {
font-size: 16px !important;
line-height: 1.6 !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
}
.gradio-container {
font-size: 14px;
}
.gr-textbox textarea {
font-size: 14px !important;
}
h1, h2, h3 {
color: #2c3e50 !important;
}
.medical-assessment .gr-textbox {
background-color: #f8f9fa !important;
}
"""
) as demo:
gr.Markdown("""
# π₯ Comprehensive Medical Consultation System
### Integrated AI-Powered Medical Assessment Platform
""")
with gr.Tab("π Patient Information"):
gr.Markdown("## Patient Demographics")
with gr.Row():
with gr.Column():
name = gr.Textbox(label="Full Name", placeholder="Enter patient's full name")
age = gr.Number(label="Age (years)", minimum=0, maximum=120)
sex = gr.Radio(["Male", "Female", "Other"], label="Sex")
with gr.Column():
weight = gr.Number(label="Weight (kg)", minimum=0, maximum=300)
height = gr.Number(label="Height (cm)", minimum=0, maximum=250)
gr.Markdown("## Chief Complaint")
complaint = gr.Textbox(
label="Chief Complaint",
placeholder="Describe the main symptoms or reason for consultation...",
lines=3
)
gr.Markdown("## Medical History")
medical_history = gr.Textbox(
label="Past Medical History",
placeholder="Include previous illnesses, surgeries, medications, allergies, family history...",
lines=5
)
with gr.Tab("π©Ί Physical Examination"):
gr.Markdown("## Physical Examination Findings")
examination = gr.Textbox(
label="Examination Findings",
placeholder="General appearance, vital signs, systemic examination findings...",
lines=6
)
gr.Markdown("## Heart Sounds Analysis")
audio_file = gr.Audio(
label="Heart Sounds Recording",
type="filepath",
sources=["upload", "microphone"]
)
heartbeat_analyze_btn = gr.Button("π Analyze Heart Sounds", variant="secondary")
heartbeat_results = gr.Textbox(label="Heart Sounds Analysis Results", lines=4)
waveform_plot = gr.Image(label="Heart Sounds Waveform")
heartbeat_analyze_btn.click(
fn=analyze_heartbeat,
inputs=[audio_file],
outputs=[heartbeat_results, waveform_plot]
)
with gr.Tab("π¬ Investigations"):
gr.Markdown("## Medical Investigations & Imaging")
investigation_image = gr.Image(
label="Upload Investigation Results (X-ray, ECG, Lab reports, etc.)",
type="pil"
)
investigate_btn = gr.Button("π Analyze Investigation", variant="secondary")
investigation_results = gr.Textbox(
label="Investigation Analysis",
lines=6,
placeholder="AI analysis of uploaded investigation will appear here..."
)
investigate_btn.click(
fn=analyze_medical_image,
inputs=[investigation_image],
outputs=[investigation_results]
)
with gr.Tab("π€ AI Assessment"):
gr.Markdown("## Comprehensive Medical Assessment")
generate_btn = gr.Button(
"π§ Generate Comprehensive Assessment",
variant="primary",
size="lg"
)
assessment_output = gr.Textbox(
label="AI-Generated Medical Assessment",
lines=20, # Increased from 15 to 20 for more space
placeholder="Complete medical assessment will be generated here based on all provided information...",
elem_classes=["medical-assessment"] # Add CSS class for styling
)
# Hidden outputs to collect all data
hidden_heartbeat = gr.Textbox(visible=False)
hidden_investigation = gr.Textbox(visible=False)
hidden_waveform = gr.Image(visible=False)
generate_btn.click(
fn=process_complete_consultation,
inputs=[name, age, sex, weight, height, complaint, medical_history,
examination, audio_file, investigation_image],
outputs=[assessment_output, hidden_waveform, hidden_heartbeat,
hidden_investigation]
)
with gr.Tab("π Patient Summary"):
gr.Markdown("## Patient Data Summary")
refresh_btn = gr.Button("π Refresh Patient Data", variant="secondary")
with gr.Row():
with gr.Column():
summary_demographics = gr.JSON(label="Demographics")
summary_clinical = gr.JSON(label="Clinical Data")
with gr.Column():
summary_results = gr.JSON(label="Investigation Results")
def refresh_patient_summary():
if patient_data:
demographics = {
"Name": patient_data.get('name', 'N/A'),
"Age": patient_data.get('age', 'N/A'),
"Sex": patient_data.get('sex', 'N/A'),
"Weight": f"{patient_data.get('weight', 'N/A')} kg",
"Height": f"{patient_data.get('height', 'N/A')} cm"
}
clinical = {
"Chief Complaint": patient_data.get('complaint', 'N/A'),
"Medical History": patient_data.get('medical_history', 'N/A')[:100] + "..." if len(patient_data.get('medical_history', '')) > 100 else patient_data.get('medical_history', 'N/A'),
"Examination": patient_data.get('examination', 'N/A')[:100] + "..." if len(patient_data.get('examination', '')) > 100 else patient_data.get('examination', 'N/A')
}
results = {
"Heartbeat Analysis": "Completed" if patient_data.get('heartbeat_analysis') else "Not performed",
"Investigation Analysis": "Completed" if patient_data.get('investigation_analysis') else "Not performed",
"Last Updated": patient_data.get('timestamp', 'N/A')
}
return demographics, clinical, results
else:
return {}, {}, {}
refresh_btn.click(
fn=refresh_patient_summary,
outputs=[summary_demographics, summary_clinical, summary_results]
)
gr.Markdown("""
---
### π Important Notes:
- This system is for educational and research purposes only
- Always consult qualified healthcare professionals for medical decisions
- Ensure patient privacy and data protection compliance
- AI assessments should supplement, not replace, clinical judgment
""")
return demo
# Launch the application
if __name__ == "__main__":
print("\nπ₯ MEDICAL CONSULTATION SYSTEM")
print("=" * 50)
# Check system status
print("π System Status Check:")
print(f"β
Gradio: Available")
print(f"{'β
' if LIBROSA_AVAILABLE else 'β οΈ'} Librosa: {'Available' if LIBROSA_AVAILABLE else 'Not installed'}")
print(f"{'β
' if TF_AVAILABLE else 'β οΈ'} TensorFlow: {'Available' if TF_AVAILABLE else 'Not installed'}")
print(f"{'β
' if GEMINI_AVAILABLE else 'β οΈ'} Gemini AI: {'Available' if GEMINI_AVAILABLE else 'Not installed'}")
# Check Gemini API key
if GEMINI_AVAILABLE:
if os.getenv("GOOGLE_API_KEY"):
print("π Gemini API Key: Configured")
else:
print("β οΈ Gemini API Key: Not set (AI features limited)")
print(" Set with: export GOOGLE_API_KEY='your_api_key_here'")
print("\nπ Starting application...")
print("π The app will be available at: http://localhost:7860")
print("=" * 50)
try:
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=False, # Set to False to reduce console output
show_error=True
)
except Exception as e:
print(f"β Error starting application: {e}")
print("Please check the error message above and ensure all dependencies are installed correctly.") |