signlanguage / multilingual-sign-app.py
walaa2022's picture
Upload multilingual-sign-app.py
80bb9b6 verified
raw
history blame
12.4 kB
import os
import sys
import gradio as gr
import requests
import json
from datetime import datetime
import tempfile
import uuid
# Install required packages if not already installed
try:
import mediapipe as mp
import cv2
import numpy as np
from googletrans import Translator
except ImportError:
print("Installing required packages...")
os.system("pip install mediapipe opencv-python numpy googletrans==4.0.0-rc1 --quiet")
import mediapipe as mp
import cv2
import numpy as np
from googletrans import Translator
TITLE = "Multilingual Sign Language Customer Assistant"
DESCRIPTION = """This app translates English or Arabic text into sign language videos for customer assistance.
The system automatically detects the input language and generates appropriate sign language visuals.
**Features:**
- Supports both English and Arabic text
- Uses SignDict for English sign language vocabulary
- Uses ArSL for Arabic sign language
- Perfect for customer service and assistance scenarios
"""
# Initialize the translation components
translator = Translator()
mp_hands = mp.solutions.hands
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
# SignDict - dictionary of common signs in both languages
# In a production app, these would link to pre-recorded videos or 3D animations
SIGN_DICT = {
"en": {
"hello": "signs/en/hello.mp4",
"welcome": "signs/en/welcome.mp4",
"thank you": "signs/en/thank_you.mp4",
"help": "signs/en/help.mp4",
"yes": "signs/en/yes.mp4",
"no": "signs/en/no.mp4",
"please": "signs/en/please.mp4",
"wait": "signs/en/wait.mp4",
"sorry": "signs/en/sorry.mp4",
"how": "signs/en/how.mp4",
"what": "signs/en/what.mp4",
"where": "signs/en/where.mp4",
"when": "signs/en/when.mp4",
"who": "signs/en/who.mp4",
"why": "signs/en/why.mp4",
"customer": "signs/en/customer.mp4",
"service": "signs/en/service.mp4",
"support": "signs/en/support.mp4",
"information": "signs/en/information.mp4",
"question": "signs/en/question.mp4",
"answer": "signs/en/answer.mp4",
},
"ar": {
"مرحبا": "signs/ar/hello.mp4",
"أهلا وسهلا": "signs/ar/welcome.mp4",
"شكرا": "signs/ar/thank_you.mp4",
"مساعدة": "signs/ar/help.mp4",
"نعم": "signs/ar/yes.mp4",
"لا": "signs/ar/no.mp4",
"من فضلك": "signs/ar/please.mp4",
"انتظر": "signs/ar/wait.mp4",
"آسف": "signs/ar/sorry.mp4",
"كيف": "signs/ar/how.mp4",
"ماذا": "signs/ar/what.mp4",
"أين": "signs/ar/where.mp4",
"متى": "signs/ar/when.mp4",
"من": "signs/ar/who.mp4",
"لماذا": "signs/ar/why.mp4",
"عميل": "signs/ar/customer.mp4",
"خدمة": "signs/ar/service.mp4",
"دعم": "signs/ar/support.mp4",
"معلومات": "signs/ar/information.mp4",
"سؤال": "signs/ar/question.mp4",
"إجابة": "signs/ar/answer.mp4",
}
}
def detect_language(text):
"""Detect if text is primarily English or Arabic"""
if not text:
return "unknown"
# Simple detection by character set
arabic_chars = set('ءآأؤإئابةتثجحخدذرزسشصضطظعغفقكلمنهوي')
english_chars = set('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')
arabic_count = sum(1 for char in text if char in arabic_chars)
english_count = sum(1 for char in text if char in english_chars)
if arabic_count > english_count:
return "ar"
elif english_count > 0:
return "en"
else:
return "unknown"
def tokenize_text(text, language):
"""Split text into tokens that can be matched to signs"""
if language == "ar":
# Arabic tokenization
tokens = text.split()
# Check for phrases
phrases = []
i = 0
while i < len(tokens):
# Try to match longest phrases first
matched = False
for j in range(min(3, len(tokens) - i), 0, -1):
phrase = " ".join(tokens[i:i+j])
if phrase in SIGN_DICT[language]:
phrases.append(phrase)
i += j
matched = True
break
if not matched:
phrases.append(tokens[i])
i += 1
return phrases
else:
# English tokenization
tokens = text.lower().split()
phrases = []
i = 0
while i < len(tokens):
matched = False
for j in range(min(3, len(tokens) - i), 0, -1):
phrase = " ".join(tokens[i:i+j])
if phrase in SIGN_DICT[language]:
phrases.append(phrase)
i += j
matched = True
break
if not matched:
phrases.append(tokens[i])
i += 1
return phrases
def translate_if_needed(text, source_lang, target_lang):
"""Translate text if it's not already in the target language"""
if source_lang == target_lang:
return text
try:
translation = translator.translate(text, src=source_lang, dest=target_lang)
return translation.text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
def generate_default_sign_video(text, output_path, language="en"):
"""Generate a simple video with the text when no sign is available"""
# Create a black frame with text
height, width = 480, 640
fps = 30
seconds = 2
# Create a VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Create frames with text
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_color = (255, 255, 255) # White
line_type = 2
# Text positioning
text_size = cv2.getTextSize(text, font, font_scale, line_type)[0]
text_x = (width - text_size[0]) // 2
text_y = (height + text_size[1]) // 2
# Write frames
for _ in range(fps * seconds):
frame = np.zeros((height, width, 3), dtype=np.uint8)
cv2.putText(frame, text, (text_x, text_y), font, font_scale, font_color, line_type)
video.write(frame)
video.release()
return output_path
def create_avatar_animation(text, output_path, language="en"):
"""Create a 3D avatar animation for the sign (simplified version)"""
# In a real implementation, this would use a 3D avatar system
# Here we'll just simulate it with a basic animation
width, height = 640, 480
fps = 30
duration = 3 # seconds
# Create video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Create a simple animation with hands
frames = fps * duration
for i in range(frames):
# Create a dark blue background
frame = np.ones((height, width, 3), dtype=np.uint8) * np.array([100, 60, 20], dtype=np.uint8)
# Draw a simple avatar body
cv2.rectangle(frame, (width//2-50, height//2-100), (width//2+50, height//2+100), (200, 200, 200), -1)
cv2.circle(frame, (width//2, height//2-150), 50, (200, 200, 200), -1)
# Animate hands based on frame number
t = i / frames
# Left hand movement
x1 = int(width//2 - 100 - 50 * np.sin(t * 2 * np.pi))
y1 = int(height//2 - 50 * np.cos(t * 2 * np.pi))
# Right hand movement
x2 = int(width//2 + 100 + 50 * np.sin(t * 2 * np.pi))
y2 = int(height//2 - 50 * np.cos(t * 2 * np.pi))
# Draw hands
cv2.circle(frame, (x1, y1), 20, (200, 200, 200), -1)
cv2.circle(frame, (x2, y2), 20, (200, 200, 200), -1)
# Add text with current sign
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, text, (width//2-100, height-50), font, 1, (255, 255, 255), 2)
if language == "ar":
# Right-to-left indicator
cv2.putText(frame, "RTL", (width-70, 30), font, 0.7, (255, 255, 255), 1)
video.write(frame)
video.release()
return output_path
def generate_sign_video(tokens, language, output_format="3D"):
"""Generate sign language video for the given tokens"""
# For each token, either find a pre-recorded video or generate one
temp_dir = tempfile.gettempdir()
output_path = os.path.join(temp_dir, f"sign_output_{uuid.uuid4()}.mp4")
# In a real implementation, this would concatenate actual sign videos
# For this demo, we'll create a simple animation
if language in SIGN_DICT and tokens[0] in SIGN_DICT[language]:
# In a real implementation, this would load the video file
# For demo purposes, we'll create an animation
create_avatar_animation(tokens[0], output_path, language)
else:
# Generate a default video with text
generate_default_sign_video(tokens[0], output_path, language)
return output_path
def translate_to_sign(text, output_format="3D"):
"""Main function to translate text to sign language video"""
if not text:
return None, ""
# Detect the input language
language = detect_language(text)
if language == "unknown":
return None, "Could not determine the language. Please use English or Arabic."
try:
# Tokenize the text
tokens = tokenize_text(text, language)
if not tokens:
return None, "No translatable tokens found."
# Generate sign language video
video_path = generate_sign_video(tokens, language, output_format)
# Prepare status message
if language == "en":
status = f"Translated English: \"{text}\" to sign language."
else:
status = f"Translated Arabic: \"{text}\" to sign language."
return video_path, status
except Exception as e:
error_msg = str(e)
print(f"Error during translation: {error_msg}")
return None, f"Error during translation: {error_msg}"
# Create the Gradio interface
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(f"# {TITLE}")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
# Input area
text_input = gr.Textbox(
lines=4,
placeholder="Enter English or Arabic text here...",
label="Text Input"
)
format_dropdown = gr.Dropdown(
choices=["3D", "2D"],
value="3D",
label="Avatar Style"
)
with gr.Row():
clear_btn = gr.Button("Clear")
translate_btn = gr.Button("Translate to Sign Language", variant="primary")
# Status area
status_output = gr.Textbox(label="Status", interactive=False)
with gr.Column():
# Output video
video_output = gr.Video(
label="Sign Language Output",
format="mp4",
autoplay=True,
show_download_button=True
)
# Examples in both languages
gr.Examples(
examples=[
["Hello, how can I help you today?"],
["Please wait while I check your account."],
["Thank you for your patience."],
["مرحبا، كيف يمكنني مساعدتك اليوم؟"],
["من فضلك انتظر بينما أتحقق من حسابك."],
["شكرا لصبرك."]
],
inputs=[text_input],
outputs=[video_output, status_output],
fn=lambda text: translate_to_sign(text)
)
# Event handlers
translate_btn.click(
fn=translate_to_sign,
inputs=[text_input, format_dropdown],
outputs=[video_output, status_output]
)
clear_btn.click(
fn=lambda: ("", "Input cleared"),
inputs=None,
outputs=[text_input, status_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch()