Spaces:
Sleeping
Sleeping
#import gradio as gr | |
#gr.load("models/walledai/walledguard-c").launch() | |
import streamlit as st | |
import torch | |
import torch.nn as nn | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Define the template | |
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information. | |
<START TEXT> | |
{prompt} | |
<END TEXT> | |
Answer: [/INST] | |
""" | |
# Load the model and tokenizer | |
def load_model(): | |
model_name = "walledai/walledguard-c" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return tokenizer, model | |
tokenizer, model = load_model() | |
# Streamlit app | |
st.title("Text Safety Evaluator") | |
# User input | |
user_input = st.text_area("Enter the text you want to evaluate:", height=100) | |
if st.button("Evaluate"): | |
if user_input: | |
# Prepare input | |
input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt") | |
# Generate output | |
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0) | |
# Decode output | |
prompt_len = input_ids.shape[-1] | |
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) | |
# Determine prediction | |
prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe' | |
# Display results | |
st.subheader("Evaluation Result:") | |
st.write(f"The text is evaluated as: **{prediction.upper()}**") | |
st.subheader("Model Output:") | |
st.write(output_decoded) | |
else: | |
st.warning("Please enter some text to evaluate.") | |
# Add some information about the model | |
st.sidebar.header("About") | |
st.sidebar.info("This app uses the WalledGuard-C model to evaluate the safety of input text. It determines whether the text is asking for or containing unsafe information.") | |
#gr.load("models/walledai/walledguard-c").launch() |