Spaces:
Sleeping
Sleeping
Commit
·
2f935de
1
Parent(s):
05cb6bd
try5
Browse files
app.py
CHANGED
@@ -1,19 +1,61 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import gradio as gr
|
2 |
+
#gr.load("models/walledai/walledguard-c").launch()
|
3 |
|
4 |
+
import streamlit as st
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
+
# Define the template
|
10 |
+
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information.
|
11 |
+
<START TEXT>
|
12 |
+
{prompt}
|
13 |
+
<END TEXT>
|
14 |
+
Answer: [/INST]
|
15 |
+
"""
|
16 |
|
17 |
+
# Load the model and tokenizer
|
18 |
+
@st.cache_resource
|
19 |
+
def load_model():
|
20 |
+
model_name = "walledai/walledguard-c"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
+
return tokenizer, model
|
24 |
|
25 |
+
tokenizer, model = load_model()
|
26 |
|
27 |
+
# Streamlit app
|
28 |
+
st.title("Text Safety Evaluator")
|
29 |
+
|
30 |
+
# User input
|
31 |
+
user_input = st.text_area("Enter the text you want to evaluate:", height=100)
|
32 |
+
|
33 |
+
if st.button("Evaluate"):
|
34 |
+
if user_input:
|
35 |
+
# Prepare input
|
36 |
+
input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt")
|
37 |
+
|
38 |
+
# Generate output
|
39 |
+
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
|
40 |
+
|
41 |
+
# Decode output
|
42 |
+
prompt_len = input_ids.shape[-1]
|
43 |
+
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
|
44 |
+
|
45 |
+
# Determine prediction
|
46 |
+
prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe'
|
47 |
+
|
48 |
+
# Display results
|
49 |
+
st.subheader("Evaluation Result:")
|
50 |
+
st.write(f"The text is evaluated as: **{prediction.upper()}**")
|
51 |
+
|
52 |
+
st.subheader("Model Output:")
|
53 |
+
st.write(output_decoded)
|
54 |
+
else:
|
55 |
+
st.warning("Please enter some text to evaluate.")
|
56 |
+
|
57 |
+
# Add some information about the model
|
58 |
+
st.sidebar.header("About")
|
59 |
+
st.sidebar.info("This app uses the WalledGuard-C model to evaluate the safety of input text. It determines whether the text is asking for or containing unsafe information.")
|
60 |
+
|
61 |
+
#gr.load("models/walledai/walledguard-c").launch()
|
app2.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
#import gradio as gr
|
2 |
-
#gr.load("models/walledai/walledguard-c").launch()
|
3 |
-
|
4 |
-
import streamlit as st
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
-
|
9 |
-
# Define the template
|
10 |
-
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information.
|
11 |
-
<START TEXT>
|
12 |
-
{prompt}
|
13 |
-
<END TEXT>
|
14 |
-
Answer: [/INST]
|
15 |
-
"""
|
16 |
-
|
17 |
-
# Load the model and tokenizer
|
18 |
-
@st.cache_resource
|
19 |
-
def load_model():
|
20 |
-
model_name = "walledai/walledguard-c"
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
-
return tokenizer, model
|
24 |
-
|
25 |
-
tokenizer, model = load_model()
|
26 |
-
|
27 |
-
# Streamlit app
|
28 |
-
st.title("Text Safety Evaluator")
|
29 |
-
|
30 |
-
# User input
|
31 |
-
user_input = st.text_area("Enter the text you want to evaluate:", height=100)
|
32 |
-
|
33 |
-
if st.button("Evaluate"):
|
34 |
-
if user_input:
|
35 |
-
# Prepare input
|
36 |
-
input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt")
|
37 |
-
|
38 |
-
# Generate output
|
39 |
-
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
|
40 |
-
|
41 |
-
# Decode output
|
42 |
-
prompt_len = input_ids.shape[-1]
|
43 |
-
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
|
44 |
-
|
45 |
-
# Determine prediction
|
46 |
-
prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe'
|
47 |
-
|
48 |
-
# Display results
|
49 |
-
st.subheader("Evaluation Result:")
|
50 |
-
st.write(f"The text is evaluated as: **{prediction.upper()}**")
|
51 |
-
|
52 |
-
st.subheader("Model Output:")
|
53 |
-
st.write(output_decoded)
|
54 |
-
else:
|
55 |
-
st.warning("Please enter some text to evaluate.")
|
56 |
-
|
57 |
-
# Add some information about the model
|
58 |
-
st.sidebar.header("About")
|
59 |
-
st.sidebar.info("This app uses the WalledGuard-C model to evaluate the safety of input text. It determines whether the text is asking for or containing unsafe information.")
|
60 |
-
|
61 |
-
#gr.load("models/walledai/walledguard-c").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app3.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load a pre-trained text generation model from Hugging Face
|
5 |
+
generator = pipeline('text-generation', model='gpt2')
|
6 |
+
|
7 |
+
def generate_text(prompt):
|
8 |
+
# Generate text using the model
|
9 |
+
result = generator(prompt, max_length=100, num_return_sequences=1)
|
10 |
+
return result[0]['generated_text']
|
11 |
+
|
12 |
+
# Create a Gradio interface
|
13 |
+
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator", description="Enter a prompt to generate text.")
|
14 |
+
|
15 |
+
# Launch the interface
|
16 |
+
if __name__ == "__main__":
|
17 |
+
interface.launch()
|