Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .env +6 -0
- .gitignore +2 -0
- PL_image-removebg-preview.png +0 -0
- app.py +108 -0
- rag.py +123 -0
- requirements.txt +11 -0
.env
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GOOGLE_API_KEY="AIzaSyA6pBfBHg3zK_3JtB6fRoYUcG4589RjSjg"
|
2 |
+
PINECONE_API_KEY="pcsk_3oYE7o_3JP3Y1f9zveyQYJxUy4WGwZy4TKqCWyemLAqUeCqpM6UPK8Ne1Bx2KGCkmDS3eq"
|
3 |
+
PINECONE_ENV="us-west1-gcp-free"
|
4 |
+
# Optional: ChromaDB Settings
|
5 |
+
CHROMA_DB_IMPL=duckdb+parquet
|
6 |
+
PERSIST_DIRECTORY=db
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
myenv
|
2 |
+
.env
|
PL_image-removebg-preview.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from rag import RAGProcessor
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Check for API key
|
11 |
+
if not os.getenv('GOOGLE_API_KEY'):
|
12 |
+
st.error("Please set the GOOGLE_API_KEY in your .env file.")
|
13 |
+
st.stop()
|
14 |
+
|
15 |
+
def initialize_session_state():
|
16 |
+
"""Initialize session state variables."""
|
17 |
+
if "rag_processor" not in st.session_state:
|
18 |
+
st.session_state.rag_processor = RAGProcessor()
|
19 |
+
if "vector_store" not in st.session_state:
|
20 |
+
st.session_state.vector_store = None
|
21 |
+
|
22 |
+
def save_uploaded_files(uploaded_files):
|
23 |
+
"""Save uploaded files to a temporary directory and return file paths."""
|
24 |
+
try:
|
25 |
+
temp_dir = tempfile.mkdtemp()
|
26 |
+
file_paths = []
|
27 |
+
|
28 |
+
for uploaded_file in uploaded_files:
|
29 |
+
file_path = os.path.join(temp_dir, uploaded_file.name)
|
30 |
+
with open(file_path, "wb") as f:
|
31 |
+
f.write(uploaded_file.getbuffer())
|
32 |
+
file_paths.append(file_path)
|
33 |
+
|
34 |
+
return file_paths
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"Error saving uploaded files: {e}")
|
37 |
+
return []
|
38 |
+
|
39 |
+
def main():
|
40 |
+
st.set_page_config(
|
41 |
+
page_title="Finance Buddy",
|
42 |
+
page_icon="💰",
|
43 |
+
layout="wide"
|
44 |
+
)
|
45 |
+
|
46 |
+
initialize_session_state()
|
47 |
+
|
48 |
+
# Main header with emoji
|
49 |
+
st.markdown("<div class='main-header'>", unsafe_allow_html=True)
|
50 |
+
st.markdown(
|
51 |
+
"<h1 style='text-align: center;'>💰 Finance Buddy</h1>",
|
52 |
+
unsafe_allow_html=True
|
53 |
+
)
|
54 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
55 |
+
|
56 |
+
# Sidebar
|
57 |
+
with st.sidebar:
|
58 |
+
st.image("PL_image-removebg-preview.png", use_column_width=True)
|
59 |
+
st.title("📄 Document Analysis")
|
60 |
+
uploaded_files = st.file_uploader(
|
61 |
+
"Upload P&L Documents (PDF)",
|
62 |
+
accept_multiple_files=True,
|
63 |
+
type=['pdf']
|
64 |
+
)
|
65 |
+
|
66 |
+
if uploaded_files and st.button("Process Documents", key="process_docs"):
|
67 |
+
with st.spinner("Processing documents..."):
|
68 |
+
try:
|
69 |
+
# Save uploaded files and process them
|
70 |
+
file_paths = save_uploaded_files(uploaded_files)
|
71 |
+
if file_paths:
|
72 |
+
st.session_state.vector_store = st.session_state.rag_processor.process_documents(file_paths)
|
73 |
+
st.success("✅ Documents processed successfully!")
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error processing documents: {e}")
|
76 |
+
|
77 |
+
# Main content
|
78 |
+
st.markdown("""
|
79 |
+
💡 **Ask questions about your P&L statements and financial data.**
|
80 |
+
""")
|
81 |
+
|
82 |
+
# Query input
|
83 |
+
query = st.text_input("🔍 Ask your question:", key="query")
|
84 |
+
|
85 |
+
if query:
|
86 |
+
if not st.session_state.vector_store:
|
87 |
+
st.warning("Please upload and process documents first!")
|
88 |
+
else:
|
89 |
+
with st.spinner("Analyzing..."):
|
90 |
+
try:
|
91 |
+
response = st.session_state.rag_processor.generate_response(
|
92 |
+
query,
|
93 |
+
st.session_state.vector_store
|
94 |
+
)
|
95 |
+
st.markdown("### 📋 Response:")
|
96 |
+
st.markdown(f">{response}")
|
97 |
+
except Exception as e:
|
98 |
+
st.error(f"Error generating response: {e}")
|
99 |
+
|
100 |
+
# Footer
|
101 |
+
st.markdown("---")
|
102 |
+
st.markdown(
|
103 |
+
"<p style='text-align: center;'>💼 Built with Streamlit & Google Generative AI</p>",
|
104 |
+
unsafe_allow_html=True
|
105 |
+
)
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|
rag.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import google.generativeai as genai
|
3 |
+
from langchain.embeddings.base import Embeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
|
10 |
+
class CustomGoogleEmbeddings(Embeddings):
|
11 |
+
"""Custom Embedding Class for Google Generative AI"""
|
12 |
+
def __init__(self, model='models/embedding-001'):
|
13 |
+
self.client = genai
|
14 |
+
self.model = model
|
15 |
+
|
16 |
+
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
17 |
+
embeddings = []
|
18 |
+
for text in texts:
|
19 |
+
text = text[:2048] if len(text) > 2048 else text
|
20 |
+
try:
|
21 |
+
embedding = self.client.embed_content(
|
22 |
+
model=self.model,
|
23 |
+
content=text,
|
24 |
+
task_type="retrieval_document"
|
25 |
+
)['embedding']
|
26 |
+
embeddings.append(embedding)
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Embedding error: {e}")
|
29 |
+
embeddings.append([0.0] * 768)
|
30 |
+
return embeddings
|
31 |
+
|
32 |
+
def embed_query(self, text: str) -> List[float]:
|
33 |
+
text = text[:2048] if len(text) > 2048 else text
|
34 |
+
try:
|
35 |
+
return self.client.embed_content(
|
36 |
+
model=self.model,
|
37 |
+
content=text,
|
38 |
+
task_type="retrieval_query"
|
39 |
+
)['embedding']
|
40 |
+
except Exception as e:
|
41 |
+
print(f"Query embedding error: {e}")
|
42 |
+
return [0.0] * 768
|
43 |
+
|
44 |
+
class RAGProcessor:
|
45 |
+
def __init__(self):
|
46 |
+
self.embeddings = CustomGoogleEmbeddings()
|
47 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
48 |
+
chunk_size=1000,
|
49 |
+
chunk_overlap=200,
|
50 |
+
separators=["\n\n", "\n", ".", ",", " ", ""]
|
51 |
+
)
|
52 |
+
genai.configure(api_key=os.getenv('GOOGLE_API_KEY'))
|
53 |
+
self.model = genai.GenerativeModel('gemini-pro')
|
54 |
+
|
55 |
+
def extract_text_from_pdf(self, pdf_file) -> str:
|
56 |
+
"""Extract text from PDF with focus on structured content"""
|
57 |
+
try:
|
58 |
+
pdf_reader = PdfReader(pdf_file)
|
59 |
+
text = ""
|
60 |
+
|
61 |
+
for page in pdf_reader.pages:
|
62 |
+
text += page.extract_text() + "\n\n"
|
63 |
+
|
64 |
+
# Basic structure preservation
|
65 |
+
# Look for common P&L statement patterns
|
66 |
+
lines = text.split('\n')
|
67 |
+
structured_text = ""
|
68 |
+
for line in lines:
|
69 |
+
# Identify potential financial entries (e.g., "Revenue: $1000")
|
70 |
+
if any(keyword in line.lower() for keyword in ['revenue', 'profit', 'loss', 'expenses', 'income', 'cost', 'margin', 'ebitda', 'tax']):
|
71 |
+
structured_text += f"FINANCIAL_ENTRY: {line}\n"
|
72 |
+
else:
|
73 |
+
structured_text += line + "\n"
|
74 |
+
|
75 |
+
return structured_text
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error extracting text from PDF: {e}")
|
79 |
+
return ""
|
80 |
+
|
81 |
+
def process_documents(self, pdf_files: List[str]) -> FAISS:
|
82 |
+
"""Process multiple PDF documents and create vector store"""
|
83 |
+
combined_text = ""
|
84 |
+
for pdf in pdf_files:
|
85 |
+
combined_text += self.extract_text_from_pdf(pdf)
|
86 |
+
|
87 |
+
# Create more focused chunks
|
88 |
+
text_chunks = self.text_splitter.split_text(combined_text)
|
89 |
+
|
90 |
+
# Create vector store
|
91 |
+
try:
|
92 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=self.embeddings)
|
93 |
+
return vector_store
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Error creating vector store: {e}")
|
96 |
+
raise
|
97 |
+
|
98 |
+
def generate_response(self, question: str, vector_store: FAISS) -> str:
|
99 |
+
"""Generate response using RAG approach"""
|
100 |
+
# Retrieve relevant context
|
101 |
+
docs = vector_store.similarity_search(question, k=4)
|
102 |
+
context = "\n".join([doc.page_content for doc in docs])
|
103 |
+
|
104 |
+
prompt = f"""
|
105 |
+
You are a financial analyst assistant. Using the following financial data context,
|
106 |
+
answer the question accurately and professionally. Include specific numbers and
|
107 |
+
calculations when relevant.
|
108 |
+
|
109 |
+
Context: {context}
|
110 |
+
|
111 |
+
Question: {question}
|
112 |
+
|
113 |
+
If the context doesn't contain enough information to answer accurately,
|
114 |
+
please state that clearly. Focus on P&L related information and financial metrics.
|
115 |
+
When providing financial figures, please format them clearly with appropriate units
|
116 |
+
(e.g., "$1,234,567" or "1.2M" for millions).
|
117 |
+
"""
|
118 |
+
|
119 |
+
try:
|
120 |
+
response = self.model.generate_content(prompt)
|
121 |
+
return response.text
|
122 |
+
except Exception as e:
|
123 |
+
return f"Error generating response: {e}"
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
python-dotenv
|
3 |
+
google-generativeai
|
4 |
+
langchain
|
5 |
+
langchain-community
|
6 |
+
faiss-cpu
|
7 |
+
PyPDF2
|
8 |
+
tabula-py
|
9 |
+
pandas
|
10 |
+
numpy
|
11 |
+
python-multipart
|