import streamlit as st from rag import RAGProcessor import os from dotenv import load_dotenv import tempfile # Load environment variables load_dotenv() # Check for API key if not os.getenv('GOOGLE_API_KEY'): st.error("Please set the GOOGLE_API_KEY in your .env file.") st.stop() def initialize_session_state(): """Initialize session state variables.""" if "rag_processor" not in st.session_state: st.session_state.rag_processor = RAGProcessor() if "vector_store" not in st.session_state: st.session_state.vector_store = None def save_uploaded_files(uploaded_files): """Save uploaded files to a temporary directory and return file paths.""" try: temp_dir = tempfile.mkdtemp() file_paths = [] for uploaded_file in uploaded_files: file_path = os.path.join(temp_dir, uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) file_paths.append(file_path) return file_paths except Exception as e: st.error(f"Error saving uploaded files: {e}") return [] def main(): st.set_page_config( page_title="Finance Buddy", page_icon="💰", layout="wide" ) initialize_session_state() # Main header with emoji st.markdown("
", unsafe_allow_html=True) st.markdown( "

💰 Walone Finance Buddy

", unsafe_allow_html=True ) st.markdown("
", unsafe_allow_html=True) # Sidebar with st.sidebar: st.image("PL_image-removebg-preview.png", use_column_width=True) st.title("📄 Document Analysis") uploaded_files = st.file_uploader( "Upload P&L Documents (PDF)", accept_multiple_files=True, type=['pdf'] ) if uploaded_files and st.button("Process Documents", key="process_docs"): with st.spinner("Processing documents..."): try: # Save uploaded files and process them file_paths = save_uploaded_files(uploaded_files) if file_paths: st.session_state.vector_store = st.session_state.rag_processor.process_documents(file_paths) st.success("✅ Documents processed successfully!") except Exception as e: st.error(f"Error processing documents: {e}") # Main content st.markdown(""" 💡 **Ask questions about your P&L statements and financial data.** """) # Query input query = st.text_input("🔍 Ask your question:", key="query") if query: if not st.session_state.vector_store: st.warning("Please upload and process documents first!") else: with st.spinner("Analyzing..."): try: response = st.session_state.rag_processor.generate_response( query, st.session_state.vector_store ) st.markdown("### 📋 Response:") st.markdown(f">{response}") except Exception as e: st.error(f"Error generating response: {e}") # Footer st.markdown("---") st.markdown( "

💼 Built by Infinity Tech

", unsafe_allow_html=True ) if __name__ == "__main__": main()