File size: 6,211 Bytes
750ea06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator
subprocess.run(
"pip install psutil",
shell=True,
)
import bitsandbytes as bnb # Import bitsandbytes for 8-bit quantization
from datetime import datetime
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'
token=os.getenv('token')
print('token = ',token)
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
# model_id = "mistralai/Mistral-7B-v0.3"
model_id = "microsoft/Phi-3-medium-4k-instruct"
# model_id = "microsoft/phi-4"
# model_id = "Qwen/Qwen2-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(
# model_id
model_id,
# use_fast=False
token= token,
trust_remote_code=True)
accelerator = Accelerator()
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
# torch_dtype= torch.uint8,
torch_dtype=torch.bfloat16,
# load_in_8bit=True,
# # # torch_dtype=torch.fl,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
trust_remote_code=True,
device_map='cuda',
# device_map=accelerator.device_map,
)
#
model = accelerator.prepare(model)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
# pipeline = transformers.pipeline(
# "text-generation",
# model="microsoft/phi-4",
# model_kwargs={"torch_dtype": "auto"},
# device_map="auto",
# )
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })
# Load the model with the inferred device map
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
# model.half()
import json
def str_to_json(str_obj):
json_obj = json.loads(str_obj)
return json_obj
@spaces.GPU(duration=170)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# yield 'retuend'
# model.to(accelerator.device)
messages = []
json_obj = str_to_json(message)
print(json_obj)
messages= json_obj
# input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
# input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
# print(f"Converted input_ids dtype: {input_ids.dtype}")
# input_str= str(input_ids2)
# print('input str = ', input_str)
generation_args = {
"max_new_tokens": max_tokens,
"return_full_text": False,
"temperature": temperature,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
gen_text=output[0]['generated_text']
# with torch.no_grad():
# gen_tokens = model.generate(
# input_ids,
# max_new_tokens=max_tokens,
# # do_sample=True,
# temperature=temperature,
# )
# gen_text = tokenizer.decode(gen_tokens[0])
# print(gen_text)
# gen_text= gen_text.replace(input_str,'')
# gen_text= gen_text.replace('<|im_end|>','')
yield gen_text
# messages = [
# # {"role": "user", "content": "What is your favourite condiment?"},
# # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
# # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
# outputs = model.generate(inputs, max_new_tokens=2000)
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(gen_text)
# yield gen_text
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |