File size: 6,211 Bytes
750ea06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil



"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator


subprocess.run(
    "pip install psutil",
   
    shell=True,
)

import bitsandbytes as bnb  # Import bitsandbytes for 8-bit quantization



from datetime import datetime


subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'



token=os.getenv('token')
print('token = ',token)

from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers

# model_id = "mistralai/Mistral-7B-v0.3"

model_id = "microsoft/Phi-3-medium-4k-instruct"
# model_id = "microsoft/phi-4"

# model_id = "Qwen/Qwen2-7B-Instruct"


tokenizer = AutoTokenizer.from_pretrained(
    # model_id
    model_id,
    # use_fast=False
    token= token,
trust_remote_code=True)


accelerator = Accelerator()

model = AutoModelForCausalLM.from_pretrained(model_id, token= token, 
                                                 # torch_dtype= torch.uint8, 
                                             torch_dtype=torch.bfloat16,
                                              # load_in_8bit=True,
                                             # #  # torch_dtype=torch.fl,
                                             attn_implementation="flash_attention_2",
                                             low_cpu_mem_usage=True,
                                             trust_remote_code=True,
                                             device_map='cuda',
                                             # device_map=accelerator.device_map,
                                             
                                            )





# 
model = accelerator.prepare(model)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)




# pipeline = transformers.pipeline(
#     "text-generation",
#     model="microsoft/phi-4",
#     model_kwargs={"torch_dtype": "auto"},
#     device_map="auto",
# )


# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })

# Load the model with the inferred device map
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
# model.half()

import json

def str_to_json(str_obj):
    json_obj = json.loads(str_obj)
    return json_obj


@spaces.GPU(duration=170)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # yield 'retuend'
    # model.to(accelerator.device)

    messages = []
    json_obj = str_to_json(message)
    print(json_obj)
    
    messages= json_obj

    # input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
    # input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
    # print(f"Converted input_ids dtype: {input_ids.dtype}")
    # input_str= str(input_ids2)
    # print('input str = ', input_str)

    generation_args = {
    "max_new_tokens": max_tokens,
    "return_full_text": False,
    "temperature": temperature,
    "do_sample": False,
}

    output = pipe(messages, **generation_args)
    print(output[0]['generated_text'])
    gen_text=output[0]['generated_text']

    # with torch.no_grad():
    #     gen_tokens = model.generate(
    # input_ids, 
    # max_new_tokens=max_tokens, 
    # # do_sample=True, 
    # temperature=temperature,
    # )

    # gen_text = tokenizer.decode(gen_tokens[0])
    # print(gen_text)
    # gen_text= gen_text.replace(input_str,'')
    # gen_text= gen_text.replace('<|im_end|>','')
    
    yield gen_text
   
  
#     messages = [
#     # {"role": "user", "content": "What is your favourite condiment?"},
#     # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
#     # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]

    # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

    # outputs = model.generate(inputs, max_new_tokens=2000)
    # gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
   
    # print(gen_text)
    # yield gen_text
    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    # response = ""

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    #     yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()