Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,52 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from openai import OpenAI
|
4 |
|
5 |
+
import os
|
|
|
|
|
|
|
6 |
|
7 |
+
UPSTAGE_API_KEY = os.getenv("UPSTAGE_API_KEY")
|
8 |
|
9 |
+
client = OpenAI(
|
10 |
+
api_key=UPSTAGE_API_KEY, # ์ค์ API ํค๋ก ๊ต์ฒด
|
11 |
+
base_url="https://api.upstage.ai/v1/solar"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
)
|
13 |
|
14 |
|
15 |
+
# ์๋ฒ ๋ฉ ํจ์ ์ ์
|
16 |
+
def get_embedding(text):
|
17 |
+
try:
|
18 |
+
response = client.embeddings.create(
|
19 |
+
model="embedding-query",
|
20 |
+
input=text
|
21 |
+
)
|
22 |
+
embedding = response.data[0].embedding
|
23 |
+
|
24 |
+
return embedding
|
25 |
+
except Exception as e:
|
26 |
+
return f"Error: {str(e)}"
|
27 |
+
|
28 |
+
# Gradio ์ธํฐํ์ด์ค
|
29 |
+
# with gr.Blocks() as demo:
|
30 |
+
# gr.Markdown("## ๐ Solar Embedding API ๋ฐ๋ชจ\n\n๋ฌธ์ฅ์ ์
๋ ฅํ๊ณ ์๋ฒ ๋ฉ ๊ฒฐ๊ณผ๋ฅผ ํ์ธํด๋ณด์ธ์.")
|
31 |
+
|
32 |
+
# with gr.Row():
|
33 |
+
# input_text = gr.Textbox(label="์
๋ ฅ ๋ฌธ์ฅ", placeholder="์: How's the weather today?")
|
34 |
+
# output_embedding = gr.Textbox(label="์๋ฒ ๋ฉ ๊ฒฐ๊ณผ(์์์ ์ธ์๋ฆฌ ๋ฐ์ฌ๋ฆผ)")
|
35 |
+
|
36 |
+
# run_button = gr.Button("์๋ฒ ๋ฉํ๊ธฐ")
|
37 |
+
# run_button.click(fn=get_embedding, inputs=input_text, outputs=output_embedding)
|
38 |
+
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
gr.Markdown("## ๐ Solar Embedding API Demo\n\nEnter a sentence and check the embedding result (rounded to three decimal places).")
|
41 |
+
|
42 |
+
with gr.Row():
|
43 |
+
input_text = gr.Textbox(label="Input Sentence", placeholder="e.g., How's the weather today?")
|
44 |
+
output_embedding = gr.Textbox(label="Embedding Result (rounded to 3 decimal places)")
|
45 |
+
|
46 |
+
run_button = gr.Button("Generate Embedding")
|
47 |
+
run_button.click(fn=get_embedding, inputs=input_text, outputs=output_embedding)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
if __name__ == "__main__":
|
52 |
demo.launch()
|