Spaces:
Running
Running
File size: 6,872 Bytes
3caf047 7e16d4f 28d8897 7e16d4f f4fda1c fcae57e 3ad3f59 fcae57e f4fda1c 7e16d4f 0f0578b 7e16d4f 3ad3f59 7e16d4f f4fda1c 7e16d4f 0f0578b 7e16d4f f4fda1c 3caf047 7e16d4f 3caf047 7e16d4f f4fda1c 7e16d4f 3caf047 7e16d4f 0f0578b 7e16d4f 28d8897 3caf047 28d8897 7e16d4f 28d8897 7e16d4f f4fda1c 7e16d4f f4fda1c 28d8897 f4fda1c 7e16d4f f4fda1c 7e16d4f 28d8897 7e16d4f f4fda1c 7e16d4f f4fda1c 7e16d4f f4fda1c 7e16d4f 28d8897 0f0578b f4fda1c 0f0578b 28d8897 0f0578b fcae57e f4fda1c fcae57e f4fda1c fcae57e 28d8897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from typing import Dict, Optional, ClassVar, List
import weave
from pydantic import BaseModel
from ...regex_model import RegexModel
from ..base import Guardrail
import re
class RegexEntityRecognitionResponse(BaseModel):
contains_entities: bool
detected_entities: Dict[str, list[str]]
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class RegexEntityRecognitionSimpleResponse(BaseModel):
contains_entities: bool
explanation: str
anonymized_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class RegexEntityRecognitionGuardrail(Guardrail):
regex_model: RegexModel
patterns: Dict[str, str] = {}
should_anonymize: bool = False
DEFAULT_PATTERNS: ClassVar[Dict[str, str]] = {
"EMAIL": r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b',
"TELEPHONENUM": r'\b(\+\d{1,3}[-.]?)?\(?\d{3}\)?[-.]?\d{3}[-.]?\d{4}\b',
"SOCIALNUM": r'\b\d{3}[-]?\d{2}[-]?\d{4}\b',
"CREDITCARDNUMBER": r'\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b',
"DATEOFBIRTH": r'\b(0[1-9]|1[0-2])[-/](0[1-9]|[12]\d|3[01])[-/](19|20)\d{2}\b',
"DRIVERLICENSENUM": r'[A-Z]\d{7}', # Example pattern, adjust for your needs
"ACCOUNTNUM": r'\b\d{10,12}\b', # Example pattern for bank accounts
"ZIPCODE": r'\b\d{5}(?:-\d{4})?\b',
"GIVENNAME": r'\b[A-Z][a-z]+\b', # Basic pattern for first names
"SURNAME": r'\b[A-Z][a-z]+\b', # Basic pattern for last names
"CITY": r'\b[A-Z][a-z]+(?:[\s-][A-Z][a-z]+)*\b',
"STREET": r'\b\d+\s+[A-Z][a-z]+\s+(?:Street|St|Avenue|Ave|Road|Rd|Boulevard|Blvd|Lane|Ln|Drive|Dr)\b',
"IDCARDNUM": r'[A-Z]\d{7,8}', # Generic pattern for ID cards
"USERNAME": r'@[A-Za-z]\w{3,}', # Basic username pattern
"PASSWORD": r'[A-Za-z0-9@#$%^&+=]{8,}', # Basic password pattern
"TAXNUM": r'\b\d{2}[-]\d{7}\b', # Example tax number pattern
"BUILDINGNUM": r'\b\d+[A-Za-z]?\b' # Basic building number pattern
}
def __init__(self, use_defaults: bool = True, should_anonymize: bool = False, show_available_entities: bool = False, **kwargs):
patterns = {}
if use_defaults:
patterns = self.DEFAULT_PATTERNS.copy()
if kwargs.get("patterns"):
patterns.update(kwargs["patterns"])
if show_available_entities:
self._print_available_entities(patterns.keys())
# Create the RegexModel instance
regex_model = RegexModel(patterns=patterns)
# Initialize the base class with both the regex_model and patterns
super().__init__(
regex_model=regex_model,
patterns=patterns,
should_anonymize=should_anonymize
)
def text_to_pattern(self, text: str) -> str:
"""
Convert input text into a regex pattern that matches the exact text.
"""
# Escape special regex characters in the text
escaped_text = re.escape(text)
# Create a pattern that matches the exact text, case-insensitive
return rf"\b{escaped_text}\b"
def _print_available_entities(self, entities: List[str]):
"""Print available entities"""
print("\nAvailable entity types:")
print("=" * 25)
for entity in entities:
print(f"- {entity}")
print("=" * 25 + "\n")
@weave.op()
def guard(self, prompt: str, custom_terms: Optional[list[str]] = None, return_detected_types: bool = True, aggregate_redaction: bool = True, **kwargs) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse:
"""
Check if the input prompt contains any entities based on the regex patterns.
Args:
prompt: Input text to check for entities
custom_terms: List of custom terms to be converted into regex patterns. If provided,
only these terms will be checked, ignoring default patterns.
return_detected_types: If True, returns detailed entity type information
Returns:
RegexEntityRecognitionResponse or RegexEntityRecognitionSimpleResponse containing detection results
"""
if custom_terms:
# Create a temporary RegexModel with only the custom patterns
temp_patterns = {term: self.text_to_pattern(term) for term in custom_terms}
temp_model = RegexModel(patterns=temp_patterns)
result = temp_model.check(prompt)
else:
# Use the original regex_model if no custom terms provided
result = self.regex_model.check(prompt)
# Create detailed explanation
explanation_parts = []
if result.matched_patterns:
explanation_parts.append("Found the following entities in the text:")
for entity_type, matches in result.matched_patterns.items():
explanation_parts.append(f"- {entity_type}: {len(matches)} instance(s)")
else:
explanation_parts.append("No entities detected in the text.")
if result.failed_patterns:
explanation_parts.append("\nChecked but did not find these entity types:")
for pattern in result.failed_patterns:
explanation_parts.append(f"- {pattern}")
# Updated anonymization logic
anonymized_text = None
if getattr(self, 'should_anonymize', False) and result.matched_patterns:
anonymized_text = prompt
for entity_type, matches in result.matched_patterns.items():
for match in matches:
replacement = "[redacted]" if aggregate_redaction else f"[{entity_type.upper()}]"
anonymized_text = anonymized_text.replace(match, replacement)
if return_detected_types:
return RegexEntityRecognitionResponse(
contains_entities=not result.passed,
detected_entities=result.matched_patterns,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text
)
else:
return RegexEntityRecognitionSimpleResponse(
contains_entities=not result.passed,
explanation="\n".join(explanation_parts),
anonymized_text=anonymized_text
)
@weave.op()
def predict(self, prompt: str, return_detected_types: bool = True, aggregate_redaction: bool = True, **kwargs) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse:
return self.guard(prompt, return_detected_types=return_detected_types, aggregate_redaction=aggregate_redaction, **kwargs) |