Spaces:
Running
Running
File size: 6,160 Bytes
993988f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import hashlib
import json
import pathlib
from enum import Enum
from typing import Union, Optional
import weave
from pydantic import BaseModel
from guardrails_genie.guardrails.base import Guardrail
from guardrails_genie.regex_model import RegexModel
def load_secrets_patterns():
default_patterns = {}
patterns = (
pathlib.Path(__file__).parent.absolute() / "secrets_patterns.jsonl"
).read_text()
for pattern in patterns.splitlines():
pattern = json.loads(pattern)
default_patterns[pattern["name"]] = [rf"{pat}" for pat in pattern["patterns"]]
return default_patterns
DEFAULT_SECRETS_PATTERNS = load_secrets_patterns()
class REDACTION(str, Enum):
REDACT_PARTIAL = "REDACT_PARTIAL"
REDACT_ALL = "REDACT_ALL"
REDACT_HASH = "REDACT_HASH"
REDACT_NONE = "REDACT_NONE"
def redact(text: str, matches: list[str], redaction_type: REDACTION) -> str:
for match in matches:
if redaction_type == REDACTION.REDACT_PARTIAL:
replacement = "[REDACTED:]" + match[:2] + ".." + match[-2:] + "[:REDACTED]"
elif redaction_type == REDACTION.REDACT_ALL:
replacement = "[REDACTED:]" + ("*" * len(match)) + "[:REDACTED]"
elif redaction_type == REDACTION.REDACT_HASH:
replacement = (
"[REDACTED:]" + hashlib.md5(match.encode()).hexdigest() + "[:REDACTED]"
)
else:
replacement = match
text = text.replace(match, replacement)
return text
class SecretsDetectionSimpleResponse(BaseModel):
contains_secrets: bool
explanation: str
redacted_text: Optional[str] = None
@property
def safe(self) -> bool:
return not self.contains_entities
class SecretsDetectionResponse(SecretsDetectionSimpleResponse):
detected_secrets: dict[str, list[str]]
class SecretsDetectionGuardrail(Guardrail):
regex_model: RegexModel
patterns: Union[dict[str, str], dict[str, list[str]]] = {}
redaction: REDACTION
def __init__(
self,
use_defaults: bool = True,
redaction: REDACTION = REDACTION.REDACT_ALL,
**kwargs,
):
patterns = {}
if use_defaults:
patterns = DEFAULT_SECRETS_PATTERNS.copy()
if kwargs.get("patterns"):
patterns.update(kwargs["patterns"])
# Create the RegexModel instance
regex_model = RegexModel(patterns=patterns)
# Initialize the base class with both the regex_model and patterns
super().__init__(
regex_model=regex_model,
patterns=patterns,
redaction=redaction,
)
@weave.op()
def guard(
self,
prompt: str,
return_detected_types: bool = True,
**kwargs,
) -> SecretsDetectionResponse | SecretsDetectionResponse:
"""
Check if the input prompt contains any entities based on the regex patterns.
Args:
prompt: Input text to check for entities
return_detected_types: If True, returns detailed entity type information
Returns:
SecretsDetectionResponse or SecretsDetectionResponse containing detection results
"""
result = self.regex_model.check(prompt)
# Create detailed explanation
explanation_parts = []
if result.matched_patterns:
explanation_parts.append("Found the following secrets in the text:")
for secret_type, matches in result.matched_patterns.items():
explanation_parts.append(f"- {secret_type}: {len(matches)} instance(s)")
else:
explanation_parts.append("No secrets detected in the text.")
redacted_text = prompt
if result.matched_patterns:
for secret_type, matches in result.matched_patterns.items():
redacted_text = redact(redacted_text, matches, self.redaction)
if return_detected_types:
return SecretsDetectionResponse(
contains_secrets=not result.passed,
detected_secrets=result.matched_patterns,
explanation="\n".join(explanation_parts),
redacted_text=redacted_text,
)
else:
return SecretsDetectionSimpleResponse(
contains_entities=not result.passed,
explanation="\n".join(explanation_parts),
redacted_text=redacted_text,
)
def main():
weave.init(project_name="parambharat/guardrails-genie")
guardrail = SecretsDetectionGuardrail(redaction=REDACTION.REDACT_ALL)
dataset = [
{
"input": 'I need to pass a key\naws_secret_access_key="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"',
},
{
"input": "My github token is: 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",
},
{
"input": "My JWT token is: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c",
},
]
for item in dataset:
# Check text for entities
result = guardrail.guard(prompt=item["input"])
# Access results
print(f"Contains entities: {result.contains_secrets}")
print(f"Detected entities: {result.detected_secrets}")
print(f"Explanation: {result.explanation}")
print(f"Anonymized text: {result.redacted_text}")
# import regex as re
#
# sample_input = "My JWT token is: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c"
# jwt_pattern = DEFAULT_SECRETS_PATTERNS["JwtToken"][0]
# print(jwt_pattern)
# pattern = re.compile(jwt_pattern)
# print(pattern)
# print(pattern.findall(sample_input))
# import pandas as pd
#
# df = pd.read_json("secrets_patterns_bak.jsonl", lines=True)
# df.loc[:, "patterns"] = df["patterns"].map(lambda x: [i[2:-1] for i in x])
# df.to_json("secrets_patterns.jsonl", orient="records", lines=True)
if __name__ == "__main__":
main()
|