Spaces:
Running
Running
import re | |
from typing import Dict, List | |
import weave | |
from pydantic import BaseModel | |
class RegexResult(BaseModel): | |
passed: bool | |
matched_patterns: Dict[str, List[str]] | |
failed_patterns: List[str] | |
class RegexModel(weave.Model): | |
""" | |
Initialize RegexModel with a dictionary of patterns. | |
Args: | |
patterns (Dict[str, str]): Dictionary where key is pattern name and value is regex pattern. | |
""" | |
patterns: Dict[str, str] | |
def __init__(self, patterns: Dict[str, str]) -> None: | |
super().__init__(patterns=patterns) | |
self._compiled_patterns = { | |
name: re.compile(pattern) for name, pattern in patterns.items() | |
} | |
def check(self, prompt: str) -> RegexResult: | |
""" | |
Check text against all patterns and return detailed results. | |
Args: | |
text: Input text to check against patterns | |
Returns: | |
RegexResult containing pass/fail status and details about matches | |
""" | |
matched_patterns = {} | |
failed_patterns = [] | |
for pattern_name, pattern in self.patterns.items(): | |
matches = [] | |
for match in re.finditer(pattern, prompt): | |
if match.groups(): | |
# If there are capture groups, join them with a separator | |
matches.append( | |
"-".join(str(g) for g in match.groups() if g is not None) | |
) | |
else: | |
# If no capture groups, use the full match | |
matches.append(match.group(0)) | |
if matches: | |
matched_patterns[pattern_name] = matches | |
else: | |
failed_patterns.append(pattern_name) | |
return RegexResult( | |
matched_patterns=matched_patterns, | |
failed_patterns=failed_patterns, | |
passed=len(matched_patterns) == 0, | |
) | |
def predict(self, text: str) -> RegexResult: | |
""" | |
Alias for check() to maintain consistency with other models. | |
""" | |
return self.check(text) | |