import re from typing import ClassVar, Dict, List, Optional import weave from pydantic import BaseModel from ...regex_model import RegexModel from ..base import Guardrail class RegexEntityRecognitionResponse(BaseModel): contains_entities: bool detected_entities: Dict[str, list[str]] explanation: str anonymized_text: Optional[str] = None @property def safe(self) -> bool: return not self.contains_entities class RegexEntityRecognitionSimpleResponse(BaseModel): contains_entities: bool explanation: str anonymized_text: Optional[str] = None @property def safe(self) -> bool: return not self.contains_entities class RegexEntityRecognitionGuardrail(Guardrail): """ A guardrail class for recognizing and optionally anonymizing entities in text using regular expressions. This class extends the Guardrail base class and utilizes a RegexModel to detect entities in the input text based on predefined or custom regex patterns. It provides functionality to check for entities, anonymize detected entities, and return detailed information about the detected entities. !!! example "Using RegexEntityRecognitionGuardrail" ```python from guardrails_genie.guardrails.entity_recognition import RegexEntityRecognitionGuardrail # Initialize with default PII patterns guardrail = RegexEntityRecognitionGuardrail(should_anonymize=True) # Or with custom patterns custom_patterns = { "employee_id": r"EMP\d{6}", "project_code": r"PRJ-[A-Z]{2}-\d{4}" } guardrail = RegexEntityRecognitionGuardrail(patterns=custom_patterns, should_anonymize=True) ``` Attributes: regex_model (RegexModel): An instance of RegexModel used for entity recognition. patterns (Dict[str, str]): A dictionary of regex patterns for entity recognition. should_anonymize (bool): A flag indicating whether detected entities should be anonymized. DEFAULT_PATTERNS (ClassVar[Dict[str, str]]): A dictionary of default regex patterns for common entities. Args: use_defaults (bool): If True, use default patterns. If False, use custom patterns. should_anonymize (bool): If True, anonymize detected entities. show_available_entities (bool): If True, print available entity types. """ regex_model: RegexModel patterns: Dict[str, str] = {} should_anonymize: bool = False DEFAULT_PATTERNS: ClassVar[Dict[str, str]] = { "EMAIL": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b", "TELEPHONENUM": r"\b(\+\d{1,3}[-.]?)?\(?\d{3}\)?[-.]?\d{3}[-.]?\d{4}\b", "SOCIALNUM": r"\b\d{3}[-]?\d{2}[-]?\d{4}\b", "CREDITCARDNUMBER": r"\b\d{4}[-\s]?\d{4}[-\s]?\d{4}[-\s]?\d{4}\b", "DATEOFBIRTH": r"\b(0[1-9]|1[0-2])[-/](0[1-9]|[12]\d|3[01])[-/](19|20)\d{2}\b", "DRIVERLICENSENUM": r"[A-Z]\d{7}", # Example pattern, adjust for your needs "ACCOUNTNUM": r"\b\d{10,12}\b", # Example pattern for bank accounts "ZIPCODE": r"\b\d{5}(?:-\d{4})?\b", "GIVENNAME": r"\b[A-Z][a-z]+\b", # Basic pattern for first names "SURNAME": r"\b[A-Z][a-z]+\b", # Basic pattern for last names "CITY": r"\b[A-Z][a-z]+(?:[\s-][A-Z][a-z]+)*\b", "STREET": r"\b\d+\s+[A-Z][a-z]+\s+(?:Street|St|Avenue|Ave|Road|Rd|Boulevard|Blvd|Lane|Ln|Drive|Dr)\b", "IDCARDNUM": r"[A-Z]\d{7,8}", # Generic pattern for ID cards "USERNAME": r"@[A-Za-z]\w{3,}", # Basic username pattern "PASSWORD": r"[A-Za-z0-9@#$%^&+=]{8,}", # Basic password pattern "TAXNUM": r"\b\d{2}[-]\d{7}\b", # Example tax number pattern "BUILDINGNUM": r"\b\d+[A-Za-z]?\b", # Basic building number pattern } def __init__( self, use_defaults: bool = True, should_anonymize: bool = False, show_available_entities: bool = False, **kwargs, ): patterns = {} if use_defaults: patterns = self.DEFAULT_PATTERNS.copy() if kwargs.get("patterns"): patterns.update(kwargs["patterns"]) if show_available_entities: self._print_available_entities(patterns.keys()) # Create the RegexModel instance regex_model = RegexModel(patterns=patterns) # Initialize the base class with both the regex_model and patterns super().__init__( regex_model=regex_model, patterns=patterns, should_anonymize=should_anonymize, ) def text_to_pattern(self, text: str) -> str: """ Convert input text into a regex pattern that matches the exact text. """ # Escape special regex characters in the text escaped_text = re.escape(text) # Create a pattern that matches the exact text, case-insensitive return rf"\b{escaped_text}\b" def _print_available_entities(self, entities: List[str]): """Print available entities""" print("\nAvailable entity types:") print("=" * 25) for entity in entities: print(f"- {entity}") print("=" * 25 + "\n") @weave.op() def guard( self, prompt: str, custom_terms: Optional[list[str]] = None, return_detected_types: bool = True, aggregate_redaction: bool = True, **kwargs, ) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse: """ Analyzes the input prompt to detect entities based on predefined or custom regex patterns. This function checks the provided text (prompt) for entities using regex patterns. It can utilize either default patterns or custom terms provided by the user. If custom terms are specified, they are converted into regex patterns, and only these are used for entity detection. The function returns detailed information about detected entities and can optionally anonymize the detected entities in the text. Args: prompt (str): The input text to be analyzed for entity detection. custom_terms (Optional[list[str]]): A list of custom terms to be converted into regex patterns. If provided, only these terms will be checked, ignoring default patterns. return_detected_types (bool): If True, the function returns detailed information about the types of entities detected in the text. aggregate_redaction (bool): Determines the anonymization strategy. If True, all detected entities are replaced with a generic "[redacted]" label. If False, each entity type is replaced with its specific label (e.g., "[ENTITY_TYPE]"). Returns: RegexEntityRecognitionResponse or RegexEntityRecognitionSimpleResponse: An object containing the results of the entity detection, including whether entities were found, the types and counts of detected entities, an explanation of the detection process, and optionally, the anonymized text. """ if custom_terms: # Create a temporary RegexModel with only the custom patterns temp_patterns = {term: self.text_to_pattern(term) for term in custom_terms} temp_model = RegexModel(patterns=temp_patterns) result = temp_model.check(prompt) else: # Use the original regex_model if no custom terms provided result = self.regex_model.check(prompt) # Create detailed explanation explanation_parts = [] if result.matched_patterns: explanation_parts.append("Found the following entities in the text:") for entity_type, matches in result.matched_patterns.items(): explanation_parts.append(f"- {entity_type}: {len(matches)} instance(s)") else: explanation_parts.append("No entities detected in the text.") if result.failed_patterns: explanation_parts.append("\nChecked but did not find these entity types:") for pattern in result.failed_patterns: explanation_parts.append(f"- {pattern}") # Updated anonymization logic anonymized_text = None if getattr(self, "should_anonymize", False) and result.matched_patterns: anonymized_text = prompt for entity_type, matches in result.matched_patterns.items(): for match in matches: replacement = ( "[redacted]" if aggregate_redaction else f"[{entity_type.upper()}]" ) anonymized_text = anonymized_text.replace(match, replacement) if return_detected_types: return RegexEntityRecognitionResponse( contains_entities=not result.passed, detected_entities=result.matched_patterns, explanation="\n".join(explanation_parts), anonymized_text=anonymized_text, ) else: return RegexEntityRecognitionSimpleResponse( contains_entities=not result.passed, explanation="\n".join(explanation_parts), anonymized_text=anonymized_text, ) @weave.op() def predict( self, prompt: str, return_detected_types: bool = True, aggregate_redaction: bool = True, **kwargs, ) -> RegexEntityRecognitionResponse | RegexEntityRecognitionSimpleResponse: return self.guard( prompt, return_detected_types=return_detected_types, aggregate_redaction=aggregate_redaction, **kwargs, )