File size: 5,230 Bytes
5de8ec7
b7f7c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a50e9
 
 
 
 
 
b7f7c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de8ec7
b7f7c83
 
 
 
 
 
 
 
 
 
 
 
 
4bedf45
b7f7c83
4bedf45
5de8ec7
b7f7c83
64a50e9
 
 
 
 
 
 
 
b7f7c83
a2f34c5
 
64a50e9
 
b7f7c83
 
 
 
 
 
 
64a50e9
b7f7c83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
import cv2
import gradio as gr
import torch
from torchvision import transforms
import requests
from PIL import Image
from demo import Demo,read_input_image_test,show_result,vis_image_feature
from osm.tiling import TileManager
from osm.viz import Colormap, plot_nodes
from utils.viz_2d import plot_images
import numpy as np
from utils.viz_2d import features_to_RGB
from utils.viz_localization import (
    likelihood_overlay,
    plot_dense_rotations,
    add_circle_inset,
)
from osm.viz import GeoPlotter
import matplotlib.pyplot as plt
import random
from geopy.distance import geodesic

experiment_or_path = "weight/last-step-checkpointing.ckpt"
# experiment_or_path="experiments/maplocanet_0906_diffhight/last-step-checkpointing.ckpt"
image_path = 'images/00000.jpg'

# prior_latlon = (37.75704325989902, -122.435941445631)
# tile_size_meters = 128
model = Demo(experiment_or_path=experiment_or_path, num_rotations=128, device='cpu')

# def build_examples(root,num):
#     images=os.listdir(root)
#     info = []
#     for i in range(len(images)):

#     pass
def demo_localize(image,long,lat,tile_size_meters):
    # inp = Image.fromarray(inp.astype('uint8'), 'RGB')
    # inp = transforms.ToTensor()(inp).unsqueeze(0)
    prior_latlon=(lat,long)
    image, camera, gravity, proj, bbox, true_prior_latlon = read_input_image_test(
        image,
        prior_latlon=prior_latlon,
        tile_size_meters=tile_size_meters,  # try 64, 256, etc.
    )
    tiler = TileManager.from_bbox(projection=proj, bbox=bbox, ppm=1, tile_size=tile_size_meters)
    # tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1,path=root/city/'{}.osm'.format(city), tile_size=1)
    canvas = tiler.query(bbox)
    uv, yaw, prob, neural_map, image_rectified, data_, pred = model.localize(
        image, camera, canvas)
    prior_latlon_pred = proj.unproject(canvas.to_xy(uv))

    map_viz = Colormap.apply(canvas.raster)
    map_vis_image_result = map_viz * 255
    map_vis_image_result =show_result(map_vis_image_result.astype(np.uint8), uv, yaw)
    # map_vis_image_result = show_result(map_vis_image_result.astype(np.uint8), True_uv,
    #                                    uv,
    #                                    90.0 - yaw_T,
    #                                    yaw)
    # return prior_latlon_pred
    uab_feature_rgb = vis_image_feature(pred['features_image'][0].cpu().numpy())
    map_viz = cv2.resize(map_viz, (prob.numpy().shape[0], prob.numpy().shape[1]))
    overlay = likelihood_overlay(prob.numpy().max(-1), map_viz.mean(-1, keepdims=True))
    (neural_map_rgb,) = features_to_RGB(neural_map.numpy())
    fig=plot_images([image, map_vis_image_result / 255, overlay, uab_feature_rgb, neural_map_rgb],
                    titles=["UAV image", "map","likelihood","UAV feature","map feature"])
    # plot_images([overlay, neural_map_rgb], titles=["prediction", "neural map"])
    # ax = plt.gcf().axes[2]
    # ax.scatter(*canvas.to_uv(bbox.center), s=5, c="red")
    # plot_dense_rotations(ax, prob, w=0.005, s=1 / 25)
    # add_circle_inset(ax, uv)

    # Plot as interactive figure
    bbox_latlon = proj.unproject(canvas.bbox)
    plot2 = GeoPlotter(zoom=16.5)
    plot2.raster(map_viz, bbox_latlon, opacity=0.5)
    plot2.raster(likelihood_overlay(prob.numpy().max(-1)), proj.unproject(bbox))
    plot2.points(prior_latlon[:2], "red", name="location prior", size=10)
    plot2.points(proj.unproject(canvas.to_xy(uv)), "black", name="argmax", size=10)
    plot2.bbox(bbox_latlon, "blue", name="map tile")
    # plot2.fig.show()
    return fig,plot2.fig,str(prior_latlon_pred)
# model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
#标题
title = "MapLocNet"
# title="<h1 align="center"><ins>MapLocNet</ins><br>UAV Vision-based Geo-Localization<br>Using Vectorized Maps</h1>"
#标题下的描述,支持md格式
description = "MapLocNet finds the position and orientation of UAV image using OpenStreetMap. Click on one of the provided examples or upload your own UAV image!"

# outputs = gr.outputs.Label(num_top_classes=3)
# outputs = gr.Plot()

examples=[
    ['images/00000.jpg',-122.435941445631,37.75704325989902,128],
['images/00011.jpg',-122.4115887,37.76847628,128],
['images/00022.jpg',-122.4421809,37.77668392,128],
['images/00033.jpg',-122.4384978,37.76426403,128],
]
interface = gr.Interface(fn=demo_localize,
                         inputs=[
                                 gr.Image(label="UAV image"),
                                 gr.Number(label="The center longitude of the map"),
                                 gr.Number(label="The central latitude of the map"),
                                 gr.Radio([64, 128, 256], label="Search radius (meters)", info="vectorized map size"),
                                 # gr.inputs.RadioGroup(label="Search radius (meters)",["English", "French", "Spanish"]),
                                 # gr.Slider(64, 512,label='Search radius (meters)')
                                 ],
                         outputs=["plot","plot","text"],
                         title=title,
                         description=description,
                         examples=examples)
interface.launch()