File size: 11,758 Bytes
629144d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

import matplotlib.pyplot as plt
# from demo import Demo, read_input_image,read_input_image_test
from evaluation.viz import plot_example_single
from dataset.torch import unbatch_to_device
import matplotlib.pyplot as plt
from typing import Optional, Tuple
import cv2
import torch
import numpy as np
import time
from logger import logger
from evaluation.run import resolve_checkpoint_path, pretrained_models
from models.maplocnet import MapLocNet
from models.voting import fuse_gps, argmax_xyr
# from data.image import resize_image, pad_image, rectify_image
from osm.raster import Canvas
from utils.wrappers import Camera
from utils.io import read_image
from utils.geo import BoundaryBox, Projection
from utils.exif import EXIF
import requests
from pathlib import Path
from utils.exif import EXIF
from dataset.image import resize_image, pad_image, rectify_image
# from maploc.demo import Demo, read_input_image
from dataset import UavMapDatasetModule
import torchvision.transforms as tvf
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from PIL import Image
# import pyproj
# Query OpenStreetMap for this area
from osm.tiling import TileManager
from utils.viz_localization import (
    likelihood_overlay,
    plot_dense_rotations,
    add_circle_inset,
)
# Show the inputs to the model: image and raster map
from osm.viz import Colormap, plot_nodes
from utils.viz_2d import plot_images

from utils.viz_2d import features_to_RGB
import random
from geopy.distance import geodesic


def vis_image_feature(F):
    def normalize(x):
        return x / np.linalg.norm(x, axis=-1, keepdims=True)

    # F=neural_map.numpy()
    F = F[:, 0:180, 0:180]
    flatten = []
    c, h, w = F.shape
    print(F.shape)
    F = np.rollaxis(F, 0, 3)
    F_flat = F.reshape(-1, c)
    flatten.append(F_flat)
    flatten = normalize(flatten)[0]

    flatten = np.nan_to_num(flatten, nan=0)
    pca = PCA(n_components=3)

    print(flatten.shape)
    flatten = pca.fit_transform(flatten)
    flatten = (normalize(flatten) + 1) / 2

    # h, w = F.shape[-2:]
    F_rgb, flatten = np.split(flatten, [h * w], axis=0)
    F_rgb = F_rgb.reshape((h, w, 3))
    return F_rgb
def distance(lat1, lon1, lat2, lon2):
    point1 = (lat1, lon1)
    point2 = (lat2, lon2)
    distance_km = geodesic(point1, point2).meters
    return distance_km

# # 示例
# lat1, lon1 = 39.9, 116.4  # 北京的经纬度
# lat2, lon2 = 31.2, 121.5  # 上海的经纬度

# distance_km = distance(lat1, lon1, lat2, lon2)
# print(distance_km)
def show_result(map_vis_image, pre_uv, pre_yaw):
    # 创建一个和原始图片大小相同的灰色蒙版图像
    gray_mask = np.zeros_like(map_vis_image)
    gray_mask.fill(128)  # 填充灰色

    # 将灰色蒙版图像与原始图像进行融合
    image = cv2.addWeighted(map_vis_image, 1, gray_mask, 0, 0)
    # 绘制真实值

    # 绘制预测值
    u, v = pre_uv
    x1, y1 = int(u), int(v)  # 替换为实际的起点坐标
    angle = pre_yaw - 90  # 替换为实际的箭头角度
    # 计算箭头的终点坐标
    length = 20
    x2 = int(x1 + length * np.cos(np.radians(angle)))
    y2 = int(y1 + length * np.sin(np.radians(angle)))
    # 在图像上画出箭头
    cv2.arrowedLine(image, (x1, y1), (x2, y2), (0, 0, 0), 2, 5, 0, 0.3)
    # cv2.circle(image, (x1, y1), radius=2, color=(255, 0, 255), thickness=-1)
    return image


def xyz_to_latlon(x, y, z):
    # 定义WGS84投影
    wgs84 = pyproj.CRS('EPSG:4326')

    # 定义XYZ投影
    xyz = pyproj.CRS(f'+proj=geocent +datum=WGS84 +units=m +no_defs')

    # 创建坐标转换器
    transformer = pyproj.Transformer.from_crs(xyz, wgs84)

    # 转换坐标
    lon, lat, _ = transformer.transform(x, y, z)

    return lat, lon


class Demo:
    def __init__(
            self,
            experiment_or_path: Optional[str] = "OrienterNet_MGL",
            device=None,
            **kwargs
    ):
        if experiment_or_path in pretrained_models:
            experiment_or_path, _ = pretrained_models[experiment_or_path]
        path = resolve_checkpoint_path(experiment_or_path)
        ckpt = torch.load(path, map_location=(lambda storage, loc: storage))
        config = ckpt["hyper_parameters"]
        config.model.update(kwargs)
        config.model.image_encoder.backbone.pretrained = False

        model = MapLocNet(config.model).eval()
        state = {k[len("model."):]: v for k, v in ckpt["state_dict"].items()}
        model.load_state_dict(state, strict=True)
        if device is None:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)

        self.model = model
        self.config = config
        self.device = device

    def prepare_data(
            self,
            image: np.ndarray,
            camera: Camera,
            canvas: Canvas,
            roll_pitch: Optional[Tuple[float]] = None,
    ):

        image = torch.from_numpy(image).permute(2, 0, 1).float().div_(255)

        return {
            'map': torch.from_numpy(canvas.raster).long(),
            'image': image,
            # 'roll_pitch_yaw':torch.tensor((0, 0, float(yaw))).float().unsqueeze(0),
            # 'pixels_per_meter':torch.tensor(float(pixel_per_meter)).float().unsqueeze(0),
            # "uv":torch.tensor([float(u), float(v)]).float().unsqueeze(0),
        }
        # return dict(
        #     image=image,
        #     map=torch.from_numpy(canvas.raster).long(),
        #     camera=camera.float(),
        #     valid=valid,
        # )

    def localize(self, image: np.ndarray, camera: Camera, canvas: Canvas, **kwargs):

        data = self.prepare_data(image, camera, canvas, **kwargs)
        data_ = {k: v.to(self.device)[None] for k, v in data.items()}
        # data_np = {k: v.cpu().numpy()[None] for k, v in data.items()}
        # logger.info(data_)
        # np.save(data_np, 'data_.npy')
        start = time.time()
        with torch.no_grad():
            pred = self.model(data_)

        end = time.time()
        xy_gps = canvas.bbox.center
        uv_gps = torch.from_numpy(canvas.to_uv(xy_gps))

        lp_xyr = pred["log_probs"].squeeze(0)
        # tile_size = canvas.bbox.size.min() / 2
        # sigma = tile_size - 20  # 20 meters margin
        # lp_xyr = fuse_gps(
        #     lp_xyr,
        #     uv_gps.to(lp_xyr),
        #     self.config.model.pixel_per_meter,
        #     sigma=sigma,
        # )
        xyr = argmax_xyr(lp_xyr).cpu()

        prob = lp_xyr.exp().cpu()
        neural_map = pred["map"]["map_features"][0].squeeze(0).cpu()
        print('total time:', start - end)
        return xyr[:2], xyr[2], prob, neural_map, data["image"], data_, pred


def load_test_data(
        root: Path,
        city: str,
        index: int,
):
    uav_image_path = root / city / 'uav'
    map_path = root / city / 'map'
    map_vis = root / city / 'map_vis'
    info_path = root / city / 'info.csv'
    osm_path = root / city / '{}.osm'.format(city)

    info = np.loadtxt(str(info_path), dtype=str, delimiter=",", skiprows=1)

    id, uav_name, map_name, \
        uav_long, uav_lat, \
        map_long, map_lat, \
        tile_size_meters, pixel_per_meter, \
        u, v, yaw, dis = info[index]
    print(info[index])
    uav_image_rgb = cv2.imread(str(uav_image_path / uav_name))
    uav_image_rgb = cv2.cvtColor(uav_image_rgb, cv2.COLOR_BGR2RGB)

    # w,h,c=uav_image_rgb.shape
    # # 指定裁剪区域的坐标
    # x = w//2   # 起始横坐标
    # y = h//2  # 起始纵坐标
    # w = 150   # 宽度
    # h = 150   # 高度

    # # 裁剪图像
    # uav_image_rgb = uav_image_rgb[y-h:y+h, x-w:x+w]

    map_vis_image = cv2.imread(str(map_vis / uav_name))
    map_vis_image = cv2.cvtColor(map_vis_image, cv2.COLOR_BGR2RGB)

    map = np.load(str(map_path / map_name))

    tfs = []
    tfs.append(tvf.ToTensor())
    tfs.append(tvf.Resize(256))
    val_tfs = tvf.Compose(tfs)

    uav_image = val_tfs(uav_image_rgb)
    # print(id, uav_name, map_name, \
    #     uav_long, uav_lat, \
    #     map_long, map_lat, \
    #     tile_size_meters, pixel_per_meter, \
    #     u, v, yaw,dis)
    uav_path = str(uav_image_path / uav_name)
    return {
        'map': torch.from_numpy(np.ascontiguousarray(map)).long().unsqueeze(0),
        'image': torch.tensor(uav_image).unsqueeze(0),
        'roll_pitch_yaw': torch.tensor((0, 0, float(yaw))).float().unsqueeze(0),
        'pixels_per_meter': torch.tensor(float(pixel_per_meter)).float().unsqueeze(0),
        "uv": torch.tensor([float(u), float(v)]).float().unsqueeze(0),
    }, uav_image_rgb, map_vis_image, uav_path, [float(map_lat), float(map_long)]


def crop_image(image, width, height):
    # 计算剪裁区域的起始点坐标
    x = int((image.shape[1] - width) / 2)
    y = int((image.shape[0] - height) / 2)

    # 剪裁图像
    cropped_image = image[y:y + height, x:x + width]
    return cropped_image


def crop_square(image):
    # 获取图像的宽度和高度
    height, width = image.shape[:2]

    # 确定最小边的长度
    min_length = min(height, width)

    # 计算剪裁区域的坐标
    top = (height - min_length) // 2
    bottom = top + min_length
    left = (width - min_length) // 2
    right = left + min_length

    # 剪裁图像为正方形
    cropped_image = image[top:bottom, left:right]

    return cropped_image
def read_input_image_test(
        image,
        prior_latlon,
        tile_size_meters,
):
    # image = read_image(image_path)
    # # 剪裁图像
    # # 指定剪裁的宽度和高度
    # width = 1080*2
    # height =1080*2
    # image = crop_square(image)
    # # print("input image:",image.shape)
    # image = crop_image(image, width, height)
    # # print("crop_image:",image.shape)
    image = cv2.resize(image,(256,256))
    roll_pitch = None


    latlon = None
    if prior_latlon is not None:
        latlon = prior_latlon
        logger.info("Using prior latlon %s.", prior_latlon)

    if latlon is None:
        with open(image_path, "rb") as fid:
            exif = EXIF(fid, lambda: image.shape[:2])
        geo = exif.extract_geo()
        if geo:
            alt = geo.get("altitude", 0)  # read if available
            latlon = (geo["latitude"], geo["longitude"], alt)
            logger.info("Using prior location from EXIF.")
            # print(latlon)
        else:
            logger.info("Could not find any prior location in the image EXIF metadata.")

    latlon = np.array(latlon)

    proj = Projection(*latlon)
    center = proj.project(latlon)
    bbox = BoundaryBox(center, center) + float(tile_size_meters)
    camera=None
    image=cv2.resize(image,(256,256))
    return image, camera, roll_pitch, proj, bbox, latlon
if __name__ == '__main__':
    experiment_or_path = "weight/last-step-checkpointing.ckpt"
    # experiment_or_path="experiments/maplocanet_0906_diffhight/last-step-checkpointing.ckpt"
    image_path='images/00000.jpg'
    prior_latlon=(37.75704325989902,-122.435941445631)
    tile_size_meters=128
    demo = Demo(experiment_or_path=experiment_or_path, num_rotations=128, device='cpu')
    image, camera, gravity, proj, bbox, true_prior_latlon = read_input_image_test(
        image_path,
        prior_latlon=prior_latlon,
        tile_size_meters=tile_size_meters,  # try 64, 256, etc.
    )
    tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1, tile_size=tile_size_meters)
    # tiler = TileManager.from_bbox(projection=proj, bbox=bbox + 10,ppm=1,path=root/city/'{}.osm'.format(city), tile_size=1)
    canvas = tiler.query(bbox)
    uv, yaw, prob, neural_map, image_rectified, data_, pred = demo.localize(
        image, camera, canvas)
    prior_latlon_pred = proj.unproject(canvas.to_xy(uv))
    pass