Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import Dataset | |
import os | |
import cv2 | |
# @Time : 2023-02-13 22:56 | |
# @Author : Wang Zhen | |
# @Email : [email protected] | |
# @File : SatelliteTool.py | |
# @Project : TGRS_seqmatch_2023_1 | |
import numpy as np | |
import random | |
from utils.geo import BoundaryBox, Projection | |
from osm.tiling import TileManager,MapTileManager | |
from pathlib import Path | |
from torchvision import transforms | |
from tqdm import tqdm | |
import time | |
import math | |
import random | |
from geopy import Point, distance | |
from osm.viz import Colormap, plot_nodes | |
def generate_random_coordinate(latitude, longitude, dis): | |
# 生成一个随机方向角 | |
random_angle = random.uniform(0, 360) | |
# print("random_angle",random_angle) | |
# 计算目标点的经纬度 | |
start_point = Point(latitude, longitude) | |
destination = distance.distance(kilometers=dis/1000).destination(start_point, random_angle) | |
return destination.latitude, destination.longitude | |
def rotate_corp(src,angle): | |
# 原图的高、宽 以及通道数 | |
rows, cols, channel = src.shape | |
# 绕图像的中心旋转 | |
# 参数:旋转中心 旋转度数 scale | |
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1) | |
# rows, cols=700,700 | |
# 自适应图片边框大小 | |
cos = np.abs(M[0, 0]) | |
sin = np.abs(M[0, 1]) | |
new_w = rows * sin + cols * cos | |
new_h = rows * cos + cols * sin | |
M[0, 2] += (new_w - cols) * 0.5 | |
M[1, 2] += (new_h - rows) * 0.5 | |
w = int(np.round(new_w)) | |
h = int(np.round(new_h)) | |
rotated = cv2.warpAffine(src, M, (w, h)) | |
# rotated = cv2.warpAffine(src, M, (cols, rows)) | |
c=int(w / 2) | |
w=int(rows*math.sqrt(2)/4) | |
rotated2=rotated[c-w:c+w,c-w:c+w,:] | |
return rotated2 | |
class SatelliteGeoTools: | |
""" | |
用于读取卫星图tfw文件,执行 像素坐标-Mercator-GPS坐标 的转化 | |
""" | |
def __init__(self, tfw_path): | |
self.SatelliteParameter=self.Parsetfw(tfw_path) | |
def Parsetfw(self, tfw_path): | |
info = [] | |
f = open(tfw_path) | |
for _ in range(6): | |
line = f.readline() | |
line = line.strip('\n') | |
info.append(float(line)) | |
f.close() | |
return info | |
def Pix2Geo(self, x, y): | |
A, D, B, E, C, F = self.SatelliteParameter | |
x1 = A * x + B * y + C | |
y1 = D * x + E * y + F | |
# print(x1,y1) | |
s_long, s_lat = self.MercatorTolonlat(x1, y1) | |
return s_long, s_lat | |
def Geo2Pix(self, lon, lat): | |
""" | |
https://baike.baidu.com/item/TFW%E6%A0%BC%E5%BC%8F/6273151?fr=aladdin | |
x'=Ax+By+C | |
y'=Dx+Ey+F | |
:return: | |
""" | |
x1, y1 = self.LonlatToMercator(lon, lat) | |
A, D, B, E, C, F = self.SatelliteParameter | |
M = np.array([[A, B, C], | |
[D, E, F], | |
[0, 0, 1]]) | |
M_INV = np.linalg.inv(M) | |
XY = np.matmul(M_INV, np.array([x1, y1, 1]).T) | |
return int(XY[0]), int(XY[1]) | |
def MercatorTolonlat(self,mx,my): | |
x = mx/20037508.3427892*180 | |
y = my/20037508.3427892*180 | |
# y= 180/math.pi*(2*math.atan(math.exp(y*math.pi/180))-math.pi/2) | |
y = 180.0 / np.pi * (2.0 * np.arctan(np.exp(y * np.pi / 180.0)) - np.pi / 2.0) | |
return x,y | |
def LonlatToMercator(self,lon, lat): | |
x = lon * 20037508.342789 / 180 | |
y = np.log(np.tan((90 + lat) * np.pi / 360)) / (np.pi / 180) | |
y = y * 20037508.34789 / 180 | |
return x, y | |
def geodistance(lng1, lat1, lng2, lat2): | |
lng1, lat1, lng2, lat2 = map(np.radians, [lng1, lat1, lng2, lat2]) | |
dlon = lng2 - lng1 | |
dlat = lat2 - lat1 | |
a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2) ** 2 | |
distance = 2 * np.arcsin(np.sqrt(a)) * 6371 * 1000 # 地球平均半径,6371km | |
return distance | |
class PreparaDataset: | |
def __init__( | |
self, | |
root: Path, | |
city:str, | |
patch_size:int, | |
tile_size_meters:float | |
): | |
super().__init__() | |
# self.root = root | |
# city = 'Manhattan' | |
# root = '/root/DATASET/CrossModel/' | |
imagepath = root/city/ '{}.tif'.format(city) | |
tfwpath = root/city/'{}.tfw'.format(city) | |
self.osmpath = root/city/'{}.osm'.format(city) | |
self.TileManager=MapTileManager(self.osmpath) | |
image = cv2.imread(str(imagepath)) | |
self.image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB) | |
self.ST = SatelliteGeoTools(str(tfwpath)) | |
self.patch_size=patch_size | |
self.tile_size_meters=tile_size_meters | |
def get_osm(self,prior_latlon,uav_latlon): | |
latlon = np.array(prior_latlon) | |
proj = Projection(*latlon) | |
center = proj.project(latlon) | |
uav_latlon=np.array(uav_latlon) | |
XY=proj.project(uav_latlon) | |
# tile_size_meters = 128 | |
bbox = BoundaryBox(center, center) + self.tile_size_meters | |
# bbox= BoundaryBox(center, center) | |
# Query OpenStreetMap for this area | |
self.pixel_per_meter = 1 | |
start_time = time.time() | |
canvas = self.TileManager.from_bbox(proj, bbox, self.pixel_per_meter) | |
end_time = time.time() | |
execution_time = end_time - start_time | |
# print("方法执行时间:", execution_time, "秒") | |
# canvas = tiler.query(bbox) | |
XY=[XY[0]+self.tile_size_meters,-XY[1]+self.tile_size_meters] | |
return canvas,XY | |
def random_corp(self): | |
# 根据随机裁剪尺寸计算出裁剪区域的左上角坐标 | |
x = random.randint(1000, self.image.shape[1] - self.patch_size-1000) | |
y = random.randint(1000, self.image.shape[0] - self.patch_size-1000) | |
x1 = x + self.patch_size | |
y1 = y + self.patch_size | |
return x,x1,y,y1 | |
def generate(self): | |
x,x1,y,y1 = self.random_corp() | |
uav_center_x,uav_center_y=int((x+x1)//2),int((y+y1)//2) | |
uav_center_long,uav_center_lat=self.ST.Pix2Geo(uav_center_x,uav_center_y) | |
# print(uav_center_long,uav_center_lat) | |
self.image_patch = self.image[y:y1, x:x1] | |
map_center_lat, map_center_long = generate_random_coordinate(uav_center_lat, uav_center_long, self.tile_size_meters) | |
map,XY=self.get_osm([map_center_lat,map_center_long],[uav_center_lat, uav_center_long]) | |
yaw=np.random.random()*360 | |
self.image_patch=rotate_corp(self.image_patch,yaw) | |
# return self.image_patch,self.osm_patch | |
# XY=[X+self.tile_size_meters | |
return { | |
'uav_image':self.image_patch, | |
'uav_long_lat':[uav_center_long,uav_center_lat], | |
'map_long_lat': [map_center_long,map_center_lat], | |
'tile_size_meters': map.raster.shape[1], | |
'pixel_per_meter':self.pixel_per_meter, | |
'yaw':yaw, | |
'map':map.raster, | |
"uv":XY | |
} | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser(description='manual to this script') | |
parser.add_argument('--city', type=str, default=None,required=True) | |
parser.add_argument('--num', type=int, default=10000) | |
args = parser.parse_args() | |
root=Path('/root/DATASET/OrienterNet/UavMap/') | |
city=args.city | |
dataset = PreparaDataset( | |
root=root, | |
city=city, | |
patch_size=512, | |
tile_size_meters=128, | |
) | |
uav_path=root/city/'uav' | |
if not uav_path.exists(): | |
uav_path.mkdir(parents=True) | |
map_path = root / city / 'map' | |
if not map_path.exists(): | |
map_path.mkdir(parents=True) | |
map_vis_path = root / city / 'map_vis' | |
if not map_vis_path.exists(): | |
map_vis_path.mkdir(parents=True) | |
info_path = root / city / 'info.csv' | |
# num=1000 | |
num = args.num | |
info=[['id','uav_name','map_name','uav_long','uav_lat','map_long','map_lat','tile_size_meters','pixel_per_meter','u','v','yaw']] | |
# info =[] | |
for i in tqdm(range(num)): | |
data=dataset.generate() | |
# print(str(uav_path/"{:05d}.jpg".format(i))) | |
cv2.imwrite(str(uav_path/"{:05d}.jpg".format(i)),cv2.cvtColor(data['uav_image'],cv2.COLOR_RGB2BGR)) | |
np.save(str(map_path/"{:05d}.npy".format(i)),data['map']) | |
map_viz, label = Colormap.apply(data['map']) | |
map_viz = map_viz * 255 | |
map_viz = map_viz.astype(np.uint8) | |
cv2.imwrite(str(map_vis_path / "{:05d}.jpg".format(i)), cv2.cvtColor(map_viz, cv2.COLOR_RGB2BGR)) | |
uav_center_long, uav_center_lat=data['uav_long_lat'] | |
map_center_long, map_center_lat = data['map_long_lat'] | |
info.append([ | |
i, | |
"{:05d}.jpg".format(i), | |
"{:05d}.npy".format(i), | |
uav_center_long, | |
uav_center_lat, | |
map_center_long, | |
map_center_lat, | |
data["tile_size_meters"], | |
data["pixel_per_meter"], | |
data['uv'][0], | |
data['uv'][1], | |
data['yaw'] | |
]) | |
# print(info) | |
np.savetxt(info_path,info,delimiter=',',fmt="%s") |