File size: 5,252 Bytes
c9b5796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import json
from pathlib import Path
from typing import Optional, Union
from functools import wraps
from huggingface_hub import (
    PyTorchModelHubMixin,
    ModelCard,
    ModelCardData,
    hf_hub_download,
)


MODEL_CARD = """
---
{{ card_data }}
---
# {{ model_name }} Model Card

Table of Contents:
- [Load trained model](#load-trained-model)
- [Model init parameters](#model-init-parameters)
- [Model metrics](#model-metrics)
- [Dataset](#dataset)

## Load trained model
```python
import feature_extractor_models as smp

model = smp.{{ model_name }}.from_pretrained("{{ save_directory | default("<save-directory-or-repo>", true)}}")
```

## Model init parameters
```python
model_init_params = {{ model_parameters }}
```

## Model metrics
{{ metrics | default("[More Information Needed]", true) }}

## Dataset
Dataset name: {{ dataset | default("[More Information Needed]", true) }}

## More Information
- Library: {{ repo_url | default("[More Information Needed]", true) }}
- Docs: {{ docs_url | default("[More Information Needed]", true) }}

This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
"""


def _format_parameters(parameters: dict):
    params = {k: v for k, v in parameters.items() if not k.startswith("_")}
    params = [
        f'"{k}": {v}' if not isinstance(v, str) else f'"{k}": "{v}"'
        for k, v in params.items()
    ]
    params = ",\n".join([f"    {param}" for param in params])
    params = "{\n" + f"{params}" + "\n}"
    return params


class SMPHubMixin(PyTorchModelHubMixin):
    def generate_model_card(self, *args, **kwargs) -> ModelCard:
        model_parameters_json = _format_parameters(self._hub_mixin_config)
        directory = self._save_directory if hasattr(self, "_save_directory") else None
        repo_id = self._repo_id if hasattr(self, "_repo_id") else None
        repo_or_directory = repo_id if repo_id is not None else directory

        metrics = self._metrics if hasattr(self, "_metrics") else None
        dataset = self._dataset if hasattr(self, "_dataset") else None

        if metrics is not None:
            metrics = json.dumps(metrics, indent=4)
            metrics = f"```json\n{metrics}\n```"

        model_card_data = ModelCardData(
            languages=["python"],
            library_name="segmentation-models-pytorch",
            license="mit",
            tags=["semantic-segmentation", "pytorch", "segmentation-models-pytorch"],
            pipeline_tag="image-segmentation",
        )
        model_card = ModelCard.from_template(
            card_data=model_card_data,
            template_str=MODEL_CARD,
            repo_url="https://github.com/qubvel/segmentation_models.pytorch",
            docs_url="https://smp.readthedocs.io/en/latest/",
            model_parameters=model_parameters_json,
            save_directory=repo_or_directory,
            model_name=self.__class__.__name__,
            metrics=metrics,
            dataset=dataset,
        )
        return model_card

    def _set_attrs_from_kwargs(self, attrs, kwargs):
        for attr in attrs:
            if attr in kwargs:
                setattr(self, f"_{attr}", kwargs.pop(attr))

    def _del_attrs(self, attrs):
        for attr in attrs:
            if hasattr(self, f"_{attr}"):
                delattr(self, f"_{attr}")

    @wraps(PyTorchModelHubMixin.save_pretrained)
    def save_pretrained(
        self, save_directory: Union[str, Path], *args, **kwargs
    ) -> Optional[str]:
        # set additional attributes to be used in generate_model_card
        self._save_directory = save_directory
        self._set_attrs_from_kwargs(["metrics", "dataset"], kwargs)

        # set additional attribute to be used in from_pretrained
        self._hub_mixin_config["_model_class"] = self.__class__.__name__

        try:
            # call the original save_pretrained
            result = super().save_pretrained(save_directory, *args, **kwargs)
        finally:
            # delete the additional attributes
            self._del_attrs(["save_directory", "metrics", "dataset"])
            self._hub_mixin_config.pop("_model_class")

        return result

    @wraps(PyTorchModelHubMixin.push_to_hub)
    def push_to_hub(self, repo_id: str, *args, **kwargs):
        self._repo_id = repo_id
        self._set_attrs_from_kwargs(["metrics", "dataset"], kwargs)
        result = super().push_to_hub(repo_id, *args, **kwargs)
        self._del_attrs(["repo_id", "metrics", "dataset"])
        return result

    @property
    def config(self):
        return self._hub_mixin_config


@wraps(PyTorchModelHubMixin.from_pretrained)
def from_pretrained(pretrained_model_name_or_path: str, *args, **kwargs):
    config_path = hf_hub_download(
        pretrained_model_name_or_path,
        filename="config.json",
        revision=kwargs.get("revision", None),
    )
    with open(config_path, "r") as f:
        config = json.load(f)
    model_class_name = config.pop("_model_class")

    import feature_extractor_models as smp

    model_class = getattr(smp, model_class_name)
    return model_class.from_pretrained(pretrained_model_name_or_path, *args, **kwargs)