Spaces:
Sleeping
Sleeping
File size: 15,778 Bytes
c9b5796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import logging
import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision.models.feature_extraction import create_feature_extractor
import feature_extractor_models as smp
import torch
from .base import BaseModel
logger = logging.getLogger(__name__)
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from collections import OrderedDict
import torch.distributed as dist
def get_batch_norm(inplace=False):
if dist.is_available() and dist.is_initialized(): # 检查是否在分布式环境中
return nn.SyncBatchNorm
else:
return nn.BatchNorm2d
BatchNorm2d = get_batch_norm()
bn_mom = 0.1
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=False):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = BatchNorm2d(planes, momentum=bn_mom)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = BatchNorm2d(planes, momentum=bn_mom)
self.downsample = downsample
self.stride = stride
self.no_relu = no_relu
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.no_relu:
return out
else:
return self.relu(out)
class Bottleneck(nn.Module):
expansion = 2
def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=True):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm2d(planes, momentum=bn_mom)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = BatchNorm2d(planes, momentum=bn_mom)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = BatchNorm2d(planes * self.expansion, momentum=bn_mom)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.no_relu = no_relu
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
if self.no_relu:
return out
else:
return self.relu(out)
class DAPPM(nn.Module):
def __init__(self, inplanes, branch_planes, outplanes):
super(DAPPM, self).__init__()
self.scale1 = nn.Sequential(nn.AvgPool2d(kernel_size=5, stride=2, padding=2),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale2 = nn.Sequential(nn.AvgPool2d(kernel_size=9, stride=4, padding=4),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale3 = nn.Sequential(nn.AvgPool2d(kernel_size=17, stride=8, padding=8),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale4 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.scale0 = nn.Sequential(
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
)
self.process1 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.process2 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.process3 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.process4 = nn.Sequential(
BatchNorm2d(branch_planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
)
self.compression = nn.Sequential(
BatchNorm2d(branch_planes * 5, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(branch_planes * 5, outplanes, kernel_size=1, bias=False),
)
self.shortcut = nn.Sequential(
BatchNorm2d(inplanes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=False),
)
def forward(self, x):
# x = self.downsample(x)
width = x.shape[-1]
height = x.shape[-2]
x_list = []
x_list.append(self.scale0(x))
x_list.append(self.process1((F.interpolate(self.scale1(x),
size=[height, width],
mode='bilinear') + x_list[0])))
x_list.append((self.process2((F.interpolate(self.scale2(x),
size=[height, width],
mode='bilinear') + x_list[1]))))
x_list.append(self.process3((F.interpolate(self.scale3(x),
size=[height, width],
mode='bilinear') + x_list[2])))
x_list.append(self.process4((F.interpolate(self.scale4(x),
size=[height, width],
mode='bilinear') + x_list[3])))
out = self.compression(torch.cat(x_list, 1)) + self.shortcut(x)
return out
class segmenthead(nn.Module):
def __init__(self, inplanes, interplanes, outplanes, scale_factor=None):
super(segmenthead, self).__init__()
self.bn1 = BatchNorm2d(inplanes, momentum=bn_mom)
self.conv1 = nn.Conv2d(inplanes, interplanes, kernel_size=3, padding=1, bias=False)
self.bn2 = BatchNorm2d(interplanes, momentum=bn_mom)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(interplanes, outplanes, kernel_size=1, padding=0, bias=True)
self.scale_factor = scale_factor
def forward(self, x):
x = self.conv1(self.relu(self.bn1(x)))
out = self.conv2(self.relu(self.bn2(x)))
if self.scale_factor is not None:
height = x.shape[-2] * self.scale_factor
width = x.shape[-1] * self.scale_factor
out = F.interpolate(out,
size=[height, width],
mode='bilinear')
return out
class DualResNet(nn.Module):
def __init__(self, block, layers, num_classes=19, planes=64, spp_planes=128, head_planes=128, augment=False):
super(DualResNet, self).__init__()
highres_planes = planes * 2
self.augment = augment
self.conv1 = nn.Sequential(
nn.Conv2d(3, planes, kernel_size=3, stride=2, padding=1),
BatchNorm2d(planes, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(planes, planes, kernel_size=3, stride=2, padding=1),
BatchNorm2d(planes, momentum=bn_mom),
nn.ReLU(inplace=True),
)
self.relu = nn.ReLU(inplace=False)
self.layer1 = self._make_layer(block, planes, planes, layers[0])
self.layer2 = self._make_layer(block, planes, planes * 2, layers[1], stride=2)
self.layer3 = self._make_layer(block, planes * 2, planes * 4, layers[2], stride=2)
self.layer4 = self._make_layer(block, planes * 4, planes * 8, layers[3], stride=2)
self.compression3 = nn.Sequential(
nn.Conv2d(planes * 4, highres_planes, kernel_size=1, bias=False),
BatchNorm2d(highres_planes, momentum=bn_mom),
)
self.compression4 = nn.Sequential(
nn.Conv2d(planes * 8, highres_planes, kernel_size=1, bias=False),
BatchNorm2d(highres_planes, momentum=bn_mom),
)
self.down3 = nn.Sequential(
nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False),
BatchNorm2d(planes * 4, momentum=bn_mom),
)
self.down4 = nn.Sequential(
nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False),
BatchNorm2d(planes * 4, momentum=bn_mom),
nn.ReLU(inplace=True),
nn.Conv2d(planes * 4, planes * 8, kernel_size=3, stride=2, padding=1, bias=False),
BatchNorm2d(planes * 8, momentum=bn_mom),
)
self.layer3_ = self._make_layer(block, planes * 2, highres_planes, 2)
self.layer4_ = self._make_layer(block, highres_planes, highres_planes, 2)
self.layer5_ = self._make_layer(Bottleneck, highres_planes, highres_planes, 1)
self.layer5 = self._make_layer(Bottleneck, planes * 8, planes * 8, 1, stride=2)
self.spp = DAPPM(planes * 16, spp_planes, planes * 4)
if self.augment:
self.seghead_extra = segmenthead(highres_planes, head_planes, num_classes)
self.final_layer = segmenthead(planes * 4, head_planes, num_classes, scale_factor=4)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, momentum=bn_mom),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
if i == (blocks - 1):
layers.append(block(inplanes, planes, stride=1, no_relu=True))
else:
layers.append(block(inplanes, planes, stride=1, no_relu=False))
return nn.Sequential(*layers)
def forward(self, x):
width_output = x.shape[-1] // 8
height_output = x.shape[-2] // 8
layers = []
x = self.conv1(x)
x = self.layer1(x)
layers.append(x)
x = self.layer2(self.relu(x))
layers.append(x)
x = self.layer3(self.relu(x))
layers.append(x)
x_ = self.layer3_(self.relu(layers[1]))
x = x + self.down3(self.relu(x_))
x_ = x_ + F.interpolate(
self.compression3(self.relu(layers[2])),
size=[height_output, width_output],
mode='bilinear')
if self.augment:
temp = x_
x = self.layer4(self.relu(x))
layers.append(x)
x_ = self.layer4_(self.relu(x_))
x = x + self.down4(self.relu(x_))
x_ = x_ + F.interpolate(
self.compression4(self.relu(layers[3])),
size=[height_output, width_output],
mode='bilinear')
x_ = self.layer5_(self.relu(x_))
x = F.interpolate(
self.spp(self.layer5(self.relu(x))),
size=[height_output, width_output],
mode='bilinear')
x_ = self.final_layer(x + x_)
if self.augment:
x_extra = self.seghead_extra(temp)
return [x_, x_extra]
else:
return x_
class FeatureExtractor(BaseModel):
default_conf = {
"pretrained": True,
"input_dim": 3,
"output_dim": 128, # # of channels in output feature maps
"encoder": "resnet50", # torchvision net as string
"remove_stride_from_first_conv": False,
"num_downsample": None, # how many downsample block
"decoder_norm": "nn.BatchNorm2d", # normalization ind decoder blocks
"do_average_pooling": False,
"checkpointed": False, # whether to use gradient checkpointing
"architecture":"FPN"
}
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# self.fmodel=None
def build_encoder(self, conf):
assert isinstance(conf.encoder, str)
if conf.pretrained:
assert conf.input_dim == 3
# return encoder, layers
def _init(self, conf):
# Preprocessing
self.register_buffer("mean_", torch.tensor(self.mean), persistent=False)
self.register_buffer("std_", torch.tensor(self.std), persistent=False)
if conf.architecture=="DDRNet23s":
# Encoder
self.fmodel= DualResNet(BasicBlock, [2, 2, 2, 2], num_classes=conf.output_dim, planes=32, spp_planes=128, head_planes=64, augment=False)
else:
raise ValueError("DDRNet23s")
# elif conf.architecture=="Unet":
# self.fmodel = smp.FPN(
# encoder_name=conf.encoder, # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
# encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization
# in_channels=conf.input_dim, # model input channels (1 for gray-scale images, 3 for RGB, etc.)
# classes=conf.output_dim, # model output channels (number of classes in your dataset)
# # upsampling=int(conf.upsampling), # optional, final output upsampling, default is 8
# activation="relu"
# )
def _forward(self, data):
image = data["image"]
image = (image - self.mean_[:, None, None]) / self.std_[:, None, None]
output = self.fmodel(image)
# output = self.decoder(skip_features)
pred = {"feature_maps": [output]}
return pred
if __name__ == '__main__':
model=FeatureExtractor() |