File size: 15,778 Bytes
c9b5796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import logging

import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision.models.feature_extraction import create_feature_extractor
import feature_extractor_models as smp
import torch
from .base import BaseModel

logger = logging.getLogger(__name__)

import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from collections import OrderedDict

import torch.distributed as dist


def get_batch_norm(inplace=False):
    if dist.is_available() and dist.is_initialized():  # 检查是否在分布式环境中
        return nn.SyncBatchNorm
    else:
        return nn.BatchNorm2d


BatchNorm2d = get_batch_norm()
bn_mom = 0.1


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=False):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = BatchNorm2d(planes, momentum=bn_mom)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = BatchNorm2d(planes, momentum=bn_mom)
        self.downsample = downsample
        self.stride = stride
        self.no_relu = no_relu

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual

        if self.no_relu:
            return out
        else:
            return self.relu(out)


class Bottleneck(nn.Module):
    expansion = 2

    def __init__(self, inplanes, planes, stride=1, downsample=None, no_relu=True):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = BatchNorm2d(planes, momentum=bn_mom)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = BatchNorm2d(planes, momentum=bn_mom)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
                               bias=False)
        self.bn3 = BatchNorm2d(planes * self.expansion, momentum=bn_mom)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.no_relu = no_relu

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        if self.no_relu:
            return out
        else:
            return self.relu(out)


class DAPPM(nn.Module):
    def __init__(self, inplanes, branch_planes, outplanes):
        super(DAPPM, self).__init__()
        self.scale1 = nn.Sequential(nn.AvgPool2d(kernel_size=5, stride=2, padding=2),
                                    BatchNorm2d(inplanes, momentum=bn_mom),
                                    nn.ReLU(inplace=True),
                                    nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
                                    )
        self.scale2 = nn.Sequential(nn.AvgPool2d(kernel_size=9, stride=4, padding=4),
                                    BatchNorm2d(inplanes, momentum=bn_mom),
                                    nn.ReLU(inplace=True),
                                    nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
                                    )
        self.scale3 = nn.Sequential(nn.AvgPool2d(kernel_size=17, stride=8, padding=8),
                                    BatchNorm2d(inplanes, momentum=bn_mom),
                                    nn.ReLU(inplace=True),
                                    nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
                                    )
        self.scale4 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
                                    BatchNorm2d(inplanes, momentum=bn_mom),
                                    nn.ReLU(inplace=True),
                                    nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
                                    )
        self.scale0 = nn.Sequential(
            BatchNorm2d(inplanes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(inplanes, branch_planes, kernel_size=1, bias=False),
        )
        self.process1 = nn.Sequential(
            BatchNorm2d(branch_planes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
        )
        self.process2 = nn.Sequential(
            BatchNorm2d(branch_planes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
        )
        self.process3 = nn.Sequential(
            BatchNorm2d(branch_planes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
        )
        self.process4 = nn.Sequential(
            BatchNorm2d(branch_planes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(branch_planes, branch_planes, kernel_size=3, padding=1, bias=False),
        )
        self.compression = nn.Sequential(
            BatchNorm2d(branch_planes * 5, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(branch_planes * 5, outplanes, kernel_size=1, bias=False),
        )
        self.shortcut = nn.Sequential(
            BatchNorm2d(inplanes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(inplanes, outplanes, kernel_size=1, bias=False),
        )

    def forward(self, x):
        # x = self.downsample(x)
        width = x.shape[-1]
        height = x.shape[-2]
        x_list = []

        x_list.append(self.scale0(x))
        x_list.append(self.process1((F.interpolate(self.scale1(x),
                                                   size=[height, width],
                                                   mode='bilinear') + x_list[0])))
        x_list.append((self.process2((F.interpolate(self.scale2(x),
                                                    size=[height, width],
                                                    mode='bilinear') + x_list[1]))))
        x_list.append(self.process3((F.interpolate(self.scale3(x),
                                                   size=[height, width],
                                                   mode='bilinear') + x_list[2])))
        x_list.append(self.process4((F.interpolate(self.scale4(x),
                                                   size=[height, width],
                                                   mode='bilinear') + x_list[3])))

        out = self.compression(torch.cat(x_list, 1)) + self.shortcut(x)
        return out


class segmenthead(nn.Module):

    def __init__(self, inplanes, interplanes, outplanes, scale_factor=None):
        super(segmenthead, self).__init__()
        self.bn1 = BatchNorm2d(inplanes, momentum=bn_mom)
        self.conv1 = nn.Conv2d(inplanes, interplanes, kernel_size=3, padding=1, bias=False)
        self.bn2 = BatchNorm2d(interplanes, momentum=bn_mom)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(interplanes, outplanes, kernel_size=1, padding=0, bias=True)
        self.scale_factor = scale_factor

    def forward(self, x):
        x = self.conv1(self.relu(self.bn1(x)))
        out = self.conv2(self.relu(self.bn2(x)))

        if self.scale_factor is not None:
            height = x.shape[-2] * self.scale_factor
            width = x.shape[-1] * self.scale_factor
            out = F.interpolate(out,
                                size=[height, width],
                                mode='bilinear')

        return out


class DualResNet(nn.Module):

    def __init__(self, block, layers, num_classes=19, planes=64, spp_planes=128, head_planes=128, augment=False):
        super(DualResNet, self).__init__()

        highres_planes = planes * 2
        self.augment = augment

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, planes, kernel_size=3, stride=2, padding=1),
            BatchNorm2d(planes, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(planes, planes, kernel_size=3, stride=2, padding=1),
            BatchNorm2d(planes, momentum=bn_mom),
            nn.ReLU(inplace=True),
        )

        self.relu = nn.ReLU(inplace=False)
        self.layer1 = self._make_layer(block, planes, planes, layers[0])
        self.layer2 = self._make_layer(block, planes, planes * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(block, planes * 2, planes * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(block, planes * 4, planes * 8, layers[3], stride=2)

        self.compression3 = nn.Sequential(
            nn.Conv2d(planes * 4, highres_planes, kernel_size=1, bias=False),
            BatchNorm2d(highres_planes, momentum=bn_mom),
        )

        self.compression4 = nn.Sequential(
            nn.Conv2d(planes * 8, highres_planes, kernel_size=1, bias=False),
            BatchNorm2d(highres_planes, momentum=bn_mom),
        )

        self.down3 = nn.Sequential(
            nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False),
            BatchNorm2d(planes * 4, momentum=bn_mom),
        )

        self.down4 = nn.Sequential(
            nn.Conv2d(highres_planes, planes * 4, kernel_size=3, stride=2, padding=1, bias=False),
            BatchNorm2d(planes * 4, momentum=bn_mom),
            nn.ReLU(inplace=True),
            nn.Conv2d(planes * 4, planes * 8, kernel_size=3, stride=2, padding=1, bias=False),
            BatchNorm2d(planes * 8, momentum=bn_mom),
        )

        self.layer3_ = self._make_layer(block, planes * 2, highres_planes, 2)

        self.layer4_ = self._make_layer(block, highres_planes, highres_planes, 2)

        self.layer5_ = self._make_layer(Bottleneck, highres_planes, highres_planes, 1)

        self.layer5 = self._make_layer(Bottleneck, planes * 8, planes * 8, 1, stride=2)

        self.spp = DAPPM(planes * 16, spp_planes, planes * 4)

        if self.augment:
            self.seghead_extra = segmenthead(highres_planes, head_planes, num_classes)

        self.final_layer = segmenthead(planes * 4, head_planes, num_classes, scale_factor=4)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def _make_layer(self, block, inplanes, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion, momentum=bn_mom),
            )

        layers = []
        layers.append(block(inplanes, planes, stride, downsample))
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            if i == (blocks - 1):
                layers.append(block(inplanes, planes, stride=1, no_relu=True))
            else:
                layers.append(block(inplanes, planes, stride=1, no_relu=False))

        return nn.Sequential(*layers)

    def forward(self, x):

        width_output = x.shape[-1] // 8
        height_output = x.shape[-2] // 8
        layers = []

        x = self.conv1(x)

        x = self.layer1(x)
        layers.append(x)

        x = self.layer2(self.relu(x))
        layers.append(x)

        x = self.layer3(self.relu(x))
        layers.append(x)
        x_ = self.layer3_(self.relu(layers[1]))

        x = x + self.down3(self.relu(x_))
        x_ = x_ + F.interpolate(
            self.compression3(self.relu(layers[2])),
            size=[height_output, width_output],
            mode='bilinear')
        if self.augment:
            temp = x_

        x = self.layer4(self.relu(x))
        layers.append(x)
        x_ = self.layer4_(self.relu(x_))

        x = x + self.down4(self.relu(x_))
        x_ = x_ + F.interpolate(
            self.compression4(self.relu(layers[3])),
            size=[height_output, width_output],
            mode='bilinear')

        x_ = self.layer5_(self.relu(x_))
        x = F.interpolate(
            self.spp(self.layer5(self.relu(x))),
            size=[height_output, width_output],
            mode='bilinear')

        x_ = self.final_layer(x + x_)

        if self.augment:
            x_extra = self.seghead_extra(temp)
            return [x_, x_extra]
        else:
            return x_

class FeatureExtractor(BaseModel):
    default_conf = {
        "pretrained": True,
        "input_dim": 3,
        "output_dim": 128,  # # of channels in output feature maps
        "encoder": "resnet50",  # torchvision net as string
        "remove_stride_from_first_conv": False,
        "num_downsample": None,  # how many downsample block
        "decoder_norm": "nn.BatchNorm2d",  # normalization ind decoder blocks
        "do_average_pooling": False,
        "checkpointed": False,  # whether to use gradient checkpointing
        "architecture":"FPN"
    }
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    # self.fmodel=None

    def build_encoder(self, conf):
        assert isinstance(conf.encoder, str)
        if conf.pretrained:
            assert conf.input_dim == 3


        # return encoder, layers



    def _init(self, conf):
        # Preprocessing
        self.register_buffer("mean_", torch.tensor(self.mean), persistent=False)
        self.register_buffer("std_", torch.tensor(self.std), persistent=False)

        if conf.architecture=="DDRNet23s":
        # Encoder
            self.fmodel= DualResNet(BasicBlock, [2, 2, 2, 2], num_classes=conf.output_dim, planes=32, spp_planes=128, head_planes=64, augment=False)
        else:
            raise ValueError("DDRNet23s")
        # elif conf.architecture=="Unet":
        #     self.fmodel = smp.FPN(
        #         encoder_name=conf.encoder,  # choose encoder, e.g. mobilenet_v2 or efficientnet-b7
        #         encoder_weights="imagenet",  # use `imagenet` pre-trained weights for encoder initialization
        #         in_channels=conf.input_dim,  # model input channels (1 for gray-scale images, 3 for RGB, etc.)
        #         classes=conf.output_dim,  # model output channels (number of classes in your dataset)
        #         # upsampling=int(conf.upsampling),  # optional, final output upsampling, default is 8
        #         activation="relu"
        #     )


    def _forward(self, data):
        image = data["image"]
        image = (image - self.mean_[:, None, None]) / self.std_[:, None, None]

        output = self.fmodel(image)
        # output = self.decoder(skip_features)

        pred = {"feature_maps": [output]}
        return pred
if __name__ == '__main__':
    model=FeatureExtractor()