Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
from . import base | |
from . import functional as F | |
from ..base.modules import Activation | |
class JaccardLoss(base.Loss): | |
def __init__(self, eps=1.0, activation=None, ignore_channels=None, **kwargs): | |
super().__init__(**kwargs) | |
self.eps = eps | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return 1 - F.jaccard( | |
y_pr, | |
y_gt, | |
eps=self.eps, | |
threshold=None, | |
ignore_channels=self.ignore_channels, | |
) | |
class DiceLoss(base.Loss): | |
def __init__( | |
self, eps=1.0, beta=1.0, activation=None, ignore_channels=None, **kwargs | |
): | |
super().__init__(**kwargs) | |
self.eps = eps | |
self.beta = beta | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return 1 - F.f_score( | |
y_pr, | |
y_gt, | |
beta=self.beta, | |
eps=self.eps, | |
threshold=None, | |
ignore_channels=self.ignore_channels, | |
) | |
class L1Loss(nn.L1Loss, base.Loss): | |
pass | |
class MSELoss(nn.MSELoss, base.Loss): | |
pass | |
class CrossEntropyLoss(nn.CrossEntropyLoss, base.Loss): | |
pass | |
class NLLLoss(nn.NLLLoss, base.Loss): | |
pass | |
class BCELoss(nn.BCELoss, base.Loss): | |
pass | |
class BCEWithLogitsLoss(nn.BCEWithLogitsLoss, base.Loss): | |
pass | |