Spaces:
Sleeping
Sleeping
from . import base | |
from . import functional as F | |
from ..base.modules import Activation | |
class IoU(base.Metric): | |
__name__ = "iou_score" | |
def __init__( | |
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs | |
): | |
super().__init__(**kwargs) | |
self.eps = eps | |
self.threshold = threshold | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return F.iou( | |
y_pr, | |
y_gt, | |
eps=self.eps, | |
threshold=self.threshold, | |
ignore_channels=self.ignore_channels, | |
) | |
class Fscore(base.Metric): | |
def __init__( | |
self, | |
beta=1, | |
eps=1e-7, | |
threshold=0.5, | |
activation=None, | |
ignore_channels=None, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.eps = eps | |
self.beta = beta | |
self.threshold = threshold | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return F.f_score( | |
y_pr, | |
y_gt, | |
eps=self.eps, | |
beta=self.beta, | |
threshold=self.threshold, | |
ignore_channels=self.ignore_channels, | |
) | |
class Accuracy(base.Metric): | |
def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs): | |
super().__init__(**kwargs) | |
self.threshold = threshold | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return F.accuracy( | |
y_pr, y_gt, threshold=self.threshold, ignore_channels=self.ignore_channels | |
) | |
class Recall(base.Metric): | |
def __init__( | |
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs | |
): | |
super().__init__(**kwargs) | |
self.eps = eps | |
self.threshold = threshold | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return F.recall( | |
y_pr, | |
y_gt, | |
eps=self.eps, | |
threshold=self.threshold, | |
ignore_channels=self.ignore_channels, | |
) | |
class Precision(base.Metric): | |
def __init__( | |
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs | |
): | |
super().__init__(**kwargs) | |
self.eps = eps | |
self.threshold = threshold | |
self.activation = Activation(activation) | |
self.ignore_channels = ignore_channels | |
def forward(self, y_pr, y_gt): | |
y_pr = self.activation(y_pr) | |
return F.precision( | |
y_pr, | |
y_gt, | |
eps=self.eps, | |
threshold=self.threshold, | |
ignore_channels=self.ignore_channels, | |
) | |