Spaces:
Sleeping
Sleeping
from typing import Optional, Union | |
from feature_extractor_models.encoders import get_encoder | |
from feature_extractor_models.base import ( | |
SegmentationModel, | |
SegmentationHead, | |
ClassificationHead, | |
) | |
from .decoder import PANDecoder | |
class PAN(SegmentationModel): | |
"""Implementation of PAN_ (Pyramid Attention Network). | |
Note: | |
Currently works with shape of input tensor >= [B x C x 128 x 128] for pytorch <= 1.1.0 | |
and with shape of input tensor >= [B x C x 256 x 256] for pytorch == 1.3.1 | |
Args: | |
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) | |
to extract features of different spatial resolution | |
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and | |
other pretrained weights (see table with available weights for each encoder_name) | |
encoder_output_stride: 16 or 32, if 16 use dilation in encoder last layer. | |
Doesn't work with ***ception***, **vgg***, **densenet*`** backbones.Default is 16. | |
decoder_channels: A number of convolution layer filters in decoder blocks | |
in_channels: A number of input channels for the model, default is 3 (RGB images) | |
classes: A number of classes for output mask (or you can think as a number of channels of output mask) | |
activation: An activation function to apply after the final convolution layer. | |
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, | |
**callable** and **None**. | |
Default is **None** | |
upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity | |
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build | |
on top of encoder if **aux_params** is not **None** (default). Supported params: | |
- classes (int): A number of classes | |
- pooling (str): One of "max", "avg". Default is "avg" | |
- dropout (float): Dropout factor in [0, 1) | |
- activation (str): An activation function to apply "sigmoid"/"softmax" | |
(could be **None** to return logits) | |
Returns: | |
``torch.nn.Module``: **PAN** | |
.. _PAN: | |
https://arxiv.org/abs/1805.10180 | |
""" | |
def __init__( | |
self, | |
encoder_name: str = "resnet34", | |
encoder_weights: Optional[str] = "imagenet", | |
encoder_output_stride: int = 16, | |
decoder_channels: int = 32, | |
in_channels: int = 3, | |
classes: int = 1, | |
activation: Optional[Union[str, callable]] = None, | |
upsampling: int = 4, | |
aux_params: Optional[dict] = None, | |
): | |
super().__init__() | |
if encoder_output_stride not in [16, 32]: | |
raise ValueError( | |
"PAN support output stride 16 or 32, got {}".format( | |
encoder_output_stride | |
) | |
) | |
self.encoder = get_encoder( | |
encoder_name, | |
in_channels=in_channels, | |
depth=5, | |
weights=encoder_weights, | |
output_stride=encoder_output_stride, | |
) | |
self.decoder = PANDecoder( | |
encoder_channels=self.encoder.out_channels, | |
decoder_channels=decoder_channels, | |
) | |
self.segmentation_head = SegmentationHead( | |
in_channels=decoder_channels, | |
out_channels=classes, | |
activation=activation, | |
kernel_size=3, | |
upsampling=upsampling, | |
) | |
if aux_params is not None: | |
self.classification_head = ClassificationHead( | |
in_channels=self.encoder.out_channels[-1], **aux_params | |
) | |
else: | |
self.classification_head = None | |
self.name = "pan-{}".format(encoder_name) | |
self.initialize() | |