Spaces:
Sleeping
Sleeping
# --------------------------------------------------------------- | |
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved. | |
# | |
# This work is licensed under the NVIDIA Source Code License | |
# --------------------------------------------------------------- | |
import math | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
from timm.layers import DropPath, to_2tuple, trunc_normal_ | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.dwconv = DWConv(hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
x = self.fc1(x) | |
x = self.dwconv(x, H, W) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
sr_ratio=1, | |
): | |
super().__init__() | |
assert ( | |
dim % num_heads == 0 | |
), f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1: | |
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
self.norm = nn.LayerNorm(dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
q = ( | |
self.q(x) | |
.reshape(B, N, self.num_heads, C // self.num_heads) | |
.permute(0, 2, 1, 3) | |
) | |
if self.sr_ratio > 1: | |
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) | |
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) | |
x_ = self.norm(x_) | |
kv = ( | |
self.kv(x_) | |
.reshape(B, -1, 2, self.num_heads, C // self.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
else: | |
kv = ( | |
self.kv(x) | |
.reshape(B, -1, 2, self.num_heads, C // self.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
k, v = kv[0], kv[1] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
sr_ratio=1, | |
): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
sr_ratio=sr_ratio, | |
) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x, H, W): | |
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | |
return x | |
class OverlapPatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
self.num_patches = self.H * self.W | |
self.proj = nn.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=stride, | |
padding=(patch_size[0] // 2, patch_size[1] // 2), | |
) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def forward(self, x): | |
x = self.proj(x) | |
_, _, H, W = x.shape | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
return x, H, W | |
class MixVisionTransformer(nn.Module): | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
embed_dims=[64, 128, 256, 512], | |
num_heads=[1, 2, 4, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
depths=[3, 4, 6, 3], | |
sr_ratios=[8, 4, 2, 1], | |
): | |
super().__init__() | |
self.num_classes = num_classes | |
self.depths = depths | |
# patch_embed | |
self.patch_embed1 = OverlapPatchEmbed( | |
img_size=img_size, | |
patch_size=7, | |
stride=4, | |
in_chans=in_chans, | |
embed_dim=embed_dims[0], | |
) | |
self.patch_embed2 = OverlapPatchEmbed( | |
img_size=img_size // 4, | |
patch_size=3, | |
stride=2, | |
in_chans=embed_dims[0], | |
embed_dim=embed_dims[1], | |
) | |
self.patch_embed3 = OverlapPatchEmbed( | |
img_size=img_size // 8, | |
patch_size=3, | |
stride=2, | |
in_chans=embed_dims[1], | |
embed_dim=embed_dims[2], | |
) | |
self.patch_embed4 = OverlapPatchEmbed( | |
img_size=img_size // 16, | |
patch_size=3, | |
stride=2, | |
in_chans=embed_dims[2], | |
embed_dim=embed_dims[3], | |
) | |
# transformer encoder | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
cur = 0 | |
self.block1 = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dims[0], | |
num_heads=num_heads[0], | |
mlp_ratio=mlp_ratios[0], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[0], | |
) | |
for i in range(depths[0]) | |
] | |
) | |
self.norm1 = norm_layer(embed_dims[0]) | |
cur += depths[0] | |
self.block2 = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dims[1], | |
num_heads=num_heads[1], | |
mlp_ratio=mlp_ratios[1], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[1], | |
) | |
for i in range(depths[1]) | |
] | |
) | |
self.norm2 = norm_layer(embed_dims[1]) | |
cur += depths[1] | |
self.block3 = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dims[2], | |
num_heads=num_heads[2], | |
mlp_ratio=mlp_ratios[2], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[2], | |
) | |
for i in range(depths[2]) | |
] | |
) | |
self.norm3 = norm_layer(embed_dims[2]) | |
cur += depths[2] | |
self.block4 = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dims[3], | |
num_heads=num_heads[3], | |
mlp_ratio=mlp_ratios[3], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[3], | |
) | |
for i in range(depths[3]) | |
] | |
) | |
self.norm4 = norm_layer(embed_dims[3]) | |
# classification head | |
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity() | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
def init_weights(self, pretrained=None): | |
pass | |
def reset_drop_path(self, drop_path_rate): | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] | |
cur = 0 | |
for i in range(self.depths[0]): | |
self.block1[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[0] | |
for i in range(self.depths[1]): | |
self.block2[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[1] | |
for i in range(self.depths[2]): | |
self.block3[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[2] | |
for i in range(self.depths[3]): | |
self.block4[i].drop_path.drop_prob = dpr[cur + i] | |
def freeze_patch_emb(self): | |
self.patch_embed1.requires_grad = False | |
def no_weight_decay(self): | |
return { | |
"pos_embed1", | |
"pos_embed2", | |
"pos_embed3", | |
"pos_embed4", | |
"cls_token", | |
} # has pos_embed may be better | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=""): | |
self.num_classes = num_classes | |
self.head = ( | |
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
) | |
def forward_features(self, x): | |
B = x.shape[0] | |
outs = [] | |
# stage 1 | |
x, H, W = self.patch_embed1(x) | |
for i, blk in enumerate(self.block1): | |
x = blk(x, H, W) | |
x = self.norm1(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
# stage 2 | |
x, H, W = self.patch_embed2(x) | |
for i, blk in enumerate(self.block2): | |
x = blk(x, H, W) | |
x = self.norm2(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
# stage 3 | |
x, H, W = self.patch_embed3(x) | |
for i, blk in enumerate(self.block3): | |
x = blk(x, H, W) | |
x = self.norm3(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
# stage 4 | |
x, H, W = self.patch_embed4(x) | |
for i, blk in enumerate(self.block4): | |
x = blk(x, H, W) | |
x = self.norm4(x) | |
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() | |
outs.append(x) | |
return outs | |
def forward(self, x): | |
x = self.forward_features(x) | |
# x = self.head(x) | |
return x | |
class DWConv(nn.Module): | |
def __init__(self, dim=768): | |
super(DWConv, self).__init__() | |
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) | |
def forward(self, x, H, W): | |
B, N, C = x.shape | |
x = x.transpose(1, 2).view(B, C, H, W) | |
x = self.dwconv(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
# --------------------------------------------------------------- | |
# End of NVIDIA code | |
# --------------------------------------------------------------- | |
from ._base import EncoderMixin # noqa E402 | |
class MixVisionTransformerEncoder(MixVisionTransformer, EncoderMixin): | |
def __init__(self, out_channels, depth=5, **kwargs): | |
super().__init__(**kwargs) | |
self._out_channels = out_channels | |
self._depth = depth | |
self._in_channels = 3 | |
def make_dilated(self, *args, **kwargs): | |
raise ValueError("MixVisionTransformer encoder does not support dilated mode") | |
def set_in_channels(self, in_channels, *args, **kwargs): | |
if in_channels != 3: | |
raise ValueError( | |
"MixVisionTransformer encoder does not support in_channels setting other than 3" | |
) | |
def forward(self, x): | |
# create dummy output for the first block | |
B, C, H, W = x.shape | |
dummy = torch.empty([B, 0, H // 2, W // 2], dtype=x.dtype, device=x.device) | |
return [x, dummy] + self.forward_features(x)[: self._depth - 1] | |
def load_state_dict(self, state_dict): | |
state_dict.pop("head.weight", None) | |
state_dict.pop("head.bias", None) | |
return super().load_state_dict(state_dict) | |
def get_pretrained_cfg(name): | |
return { | |
"url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/{}.pth".format( | |
name | |
), | |
"input_space": "RGB", | |
"input_size": [3, 224, 224], | |
"input_range": [0, 1], | |
"mean": [0.485, 0.456, 0.406], | |
"std": [0.229, 0.224, 0.225], | |
} | |
mix_transformer_encoders = { | |
"mit_b0": { | |
"encoder": MixVisionTransformerEncoder, | |
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b0")}, | |
"params": dict( | |
out_channels=(3, 0, 32, 64, 160, 256), | |
patch_size=4, | |
embed_dims=[32, 64, 160, 256], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[2, 2, 2, 2], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
), | |
}, | |
"mit_b1": { | |
"encoder": MixVisionTransformerEncoder, | |
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b1")}, | |
"params": dict( | |
out_channels=(3, 0, 64, 128, 320, 512), | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[2, 2, 2, 2], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
), | |
}, | |
"mit_b2": { | |
"encoder": MixVisionTransformerEncoder, | |
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b2")}, | |
"params": dict( | |
out_channels=(3, 0, 64, 128, 320, 512), | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[3, 4, 6, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
), | |
}, | |
"mit_b3": { | |
"encoder": MixVisionTransformerEncoder, | |
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b3")}, | |
"params": dict( | |
out_channels=(3, 0, 64, 128, 320, 512), | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[3, 4, 18, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
), | |
}, | |
"mit_b4": { | |
"encoder": MixVisionTransformerEncoder, | |
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b4")}, | |
"params": dict( | |
out_channels=(3, 0, 64, 128, 320, 512), | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[3, 8, 27, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
), | |
}, | |
"mit_b5": { | |
"encoder": MixVisionTransformerEncoder, | |
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b5")}, | |
"params": dict( | |
out_channels=(3, 0, 64, 128, 320, 512), | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
depths=[3, 6, 40, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
), | |
}, | |
} | |