Spaces:
Sleeping
Sleeping
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` | |
Attributes: | |
_out_channels (list of int): specify number of channels for each encoder feature tensor | |
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) | |
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) | |
Methods: | |
forward(self, x: torch.Tensor) | |
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of | |
shape NCHW (features should be sorted in descending order according to spatial resolution, starting | |
with resolution same as input `x` tensor). | |
Input: `x` with shape (1, 3, 64, 64) | |
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes | |
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), | |
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) | |
also should support number of features according to specified depth, e.g. if depth = 5, | |
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), | |
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). | |
""" | |
from copy import deepcopy | |
import torch.nn as nn | |
from torchvision.models.resnet import ResNet | |
from torchvision.models.resnet import BasicBlock | |
from torchvision.models.resnet import Bottleneck | |
from pretrainedmodels.models.torchvision_models import pretrained_settings | |
from ._base import EncoderMixin | |
class ResNetEncoder(ResNet, EncoderMixin): | |
def __init__(self, out_channels, depth=5, **kwargs): | |
super().__init__(**kwargs) | |
self._depth = depth | |
self._out_channels = out_channels | |
self._in_channels = 3 | |
del self.fc | |
del self.avgpool | |
def get_stages(self): | |
return [ | |
nn.Identity(), | |
nn.Sequential(self.conv1, self.bn1, self.relu), | |
nn.Sequential(self.maxpool, self.layer1), | |
self.layer2, | |
self.layer3, | |
self.layer4, | |
] | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict, **kwargs): | |
state_dict.pop("fc.bias", None) | |
state_dict.pop("fc.weight", None) | |
super().load_state_dict(state_dict, **kwargs) | |
new_settings = { | |
"resnet18": { | |
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth", # noqa | |
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth", # noqa | |
}, | |
"resnet50": { | |
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth", # noqa | |
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth", # noqa | |
}, | |
"resnext50_32x4d": { | |
"imagenet": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", | |
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth", # noqa | |
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth", # noqa | |
}, | |
"resnext101_32x4d": { | |
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth", # noqa | |
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth", # noqa | |
}, | |
"resnext101_32x8d": { | |
"imagenet": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", | |
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth", | |
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth", # noqa | |
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth", # noqa | |
}, | |
"resnext101_32x16d": { | |
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth", | |
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth", # noqa | |
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth", # noqa | |
}, | |
"resnext101_32x32d": { | |
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth" | |
}, | |
"resnext101_32x48d": { | |
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth" | |
}, | |
} | |
pretrained_settings = deepcopy(pretrained_settings) | |
for model_name, sources in new_settings.items(): | |
if model_name not in pretrained_settings: | |
pretrained_settings[model_name] = {} | |
for source_name, source_url in sources.items(): | |
pretrained_settings[model_name][source_name] = { | |
"url": source_url, | |
"input_size": [3, 224, 224], | |
"input_range": [0, 1], | |
"mean": [0.485, 0.456, 0.406], | |
"std": [0.229, 0.224, 0.225], | |
"num_classes": 1000, | |
} | |
resnet_encoders = { | |
"resnet18": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnet18"], | |
"params": { | |
"out_channels": (3, 64, 64, 128, 256, 512), | |
"block": BasicBlock, | |
"layers": [2, 2, 2, 2], | |
}, | |
}, | |
"resnet34": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnet34"], | |
"params": { | |
"out_channels": (3, 64, 64, 128, 256, 512), | |
"block": BasicBlock, | |
"layers": [3, 4, 6, 3], | |
}, | |
}, | |
"resnet50": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnet50"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 6, 3], | |
}, | |
}, | |
"resnet101": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnet101"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 23, 3], | |
}, | |
}, | |
"resnet152": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnet152"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 8, 36, 3], | |
}, | |
}, | |
"resnext50_32x4d": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnext50_32x4d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 6, 3], | |
"groups": 32, | |
"width_per_group": 4, | |
}, | |
}, | |
"resnext101_32x4d": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnext101_32x4d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 23, 3], | |
"groups": 32, | |
"width_per_group": 4, | |
}, | |
}, | |
"resnext101_32x8d": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnext101_32x8d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 23, 3], | |
"groups": 32, | |
"width_per_group": 8, | |
}, | |
}, | |
"resnext101_32x16d": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnext101_32x16d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 23, 3], | |
"groups": 32, | |
"width_per_group": 16, | |
}, | |
}, | |
"resnext101_32x32d": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnext101_32x32d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 23, 3], | |
"groups": 32, | |
"width_per_group": 32, | |
}, | |
}, | |
"resnext101_32x48d": { | |
"encoder": ResNetEncoder, | |
"pretrained_settings": pretrained_settings["resnext101_32x48d"], | |
"params": { | |
"out_channels": (3, 64, 256, 512, 1024, 2048), | |
"block": Bottleneck, | |
"layers": [3, 4, 23, 3], | |
"groups": 32, | |
"width_per_group": 48, | |
}, | |
}, | |
} | |