File size: 9,525 Bytes
c0fdaf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import numpy as np
from safetensors import safe_open


def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
    """
    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

    Args:
        timesteps (`torch.Tensor`):
            generate embedding vectors at these timesteps
        embedding_dim (`int`, *optional*, defaults to 512):
            dimension of the embeddings to generate
        dtype:
            data type of the generated embeddings

    Returns:
        `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
    """
    assert len(w.shape) == 1
    w = w * 1000.0

    half_dim = embedding_dim // 2
    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
    emb = w.to(dtype)[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0, 1))
    assert emb.shape == (w.shape[0], embedding_dim)
    return emb


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(
            f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
    c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
    c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
    return c_skip, c_out


# Compare LCMScheduler.step, Step 4
def predicted_origin(model_output, timesteps, sample, prediction_type, alphas, sigmas):
    if prediction_type == "epsilon":
        sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
        alphas = extract_into_tensor(alphas, timesteps, sample.shape)
        pred_x_0 = (sample - sigmas * model_output) / alphas
    elif prediction_type == "v_prediction":
        sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
        alphas = extract_into_tensor(alphas, timesteps, sample.shape)
        pred_x_0 = alphas * sample - sigmas * model_output
    else:
        raise ValueError(
            f"Prediction type {prediction_type} currently not supported.")

    return pred_x_0


def scale_for_loss(timesteps, sample, prediction_type, alphas, sigmas):
    if prediction_type == "epsilon":
        sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
        alphas = extract_into_tensor(alphas, timesteps, sample.shape)
        sample = sample * alphas / sigmas
    else:
        raise ValueError(
            f"Prediction type {prediction_type} currently not supported.")

    return sample


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


class DDIMSolver:
    def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50):
        # DDIM sampling parameters
        step_ratio = timesteps // ddim_timesteps
        self.ddim_timesteps = (
            np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
        # self.ddim_timesteps = (torch.linspace(100**2,1000**2,30)**0.5).round().numpy().astype(np.int64) - 1
        self.ddim_timesteps_prev = np.asarray(
            [0] + self.ddim_timesteps[:-1].tolist()
        )
        self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
        self.ddim_alpha_cumprods_prev = np.asarray(
            [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
        )
        self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
        self.ddim_alpha_cumprods_prev = np.asarray(
            [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
        )
        # convert to torch tensors
        self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
        self.ddim_timesteps_prev = torch.from_numpy(
            self.ddim_timesteps_prev).long()
        self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
        self.ddim_alpha_cumprods_prev = torch.from_numpy(
            self.ddim_alpha_cumprods_prev)

    def to(self, device):
        self.ddim_timesteps = self.ddim_timesteps.to(device)
        self.ddim_timesteps_prev = self.ddim_timesteps_prev.to(device)
        self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
        self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(
            device)
        return self

    def ddim_step(self, pred_x0, pred_noise, timestep_index):
        alpha_cumprod_prev = extract_into_tensor(
            self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
        dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
        x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
        return x_prev


@torch.no_grad()
def update_ema(target_params, source_params, rate=0.99):
    """
    Update target parameters to be closer to those of source parameters using
    an exponential moving average.

    :param target_params: the target parameter sequence.
    :param source_params: the source parameter sequence.
    :param rate: the EMA rate (closer to 1 means slower).
    """
    for targ, src in zip(target_params, source_params):
        targ.detach().mul_(rate).add_(src, alpha=1 - rate)


def convert_lcm_lora(unet, path, alpha=1.0):

    if path.endswith(("ckpt",)):
        state_dict = torch.load(path, map_location="cpu")
    else:
        state_dict = {}
        with safe_open(path, framework="pt", device="cpu") as f:
            for key in f.keys():
                state_dict[key] = f.get_tensor(key)

    num_alpha = 0
    for key in state_dict.keys():
        if "alpha" in key:
            num_alpha += 1

    lora_keys = [k for k in state_dict.keys(
    ) if k.endswith("lora_down.weight")]

    updated_state_dict = {}
    for key in lora_keys:
        lora_name = key.split(".")[0]

        if lora_name.startswith("lora_unet_"):
            diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

            if "input.blocks" in diffusers_name:
                diffusers_name = diffusers_name.replace(
                    "input.blocks", "down_blocks")
            else:
                diffusers_name = diffusers_name.replace(
                    "down.blocks", "down_blocks")

            if "middle.block" in diffusers_name:
                diffusers_name = diffusers_name.replace(
                    "middle.block", "mid_block")
            else:
                diffusers_name = diffusers_name.replace(
                    "mid.block", "mid_block")
            if "output.blocks" in diffusers_name:
                diffusers_name = diffusers_name.replace(
                    "output.blocks", "up_blocks")
            else:
                diffusers_name = diffusers_name.replace(
                    "up.blocks", "up_blocks")

            diffusers_name = diffusers_name.replace(
                "transformer.blocks", "transformer_blocks")
            diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
            diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
            diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
            diffusers_name = diffusers_name.replace(
                "to.out.0.lora", "to_out_lora")
            diffusers_name = diffusers_name.replace("proj.in", "proj_in")
            diffusers_name = diffusers_name.replace("proj.out", "proj_out")
            diffusers_name = diffusers_name.replace(
                "time.emb.proj", "time_emb_proj")
            diffusers_name = diffusers_name.replace(
                "conv.shortcut", "conv_shortcut")

            updated_state_dict[diffusers_name] = state_dict[key]
            up_diffusers_name = diffusers_name.replace(".down.", ".up.")
            up_key = key.replace("lora_down.weight", "lora_up.weight")
            updated_state_dict[up_diffusers_name] = state_dict[up_key]

    state_dict = updated_state_dict

    num_lora = 0
    for key in state_dict:
        if "up." in key:
            continue
        up_key = key.replace(".down.", ".up.")
        model_key = key.replace("processor.", "").replace("_lora", "").replace(
            "down.", "").replace("up.", "").replace(".lora", "")
        model_key = model_key.replace("to_out.", "to_out.0.")
        layer_infos = model_key.split(".")[:-1]

        curr_layer = unet
        while len(layer_infos) > 0:
            temp_name = layer_infos.pop(0)
            curr_layer = curr_layer.__getattr__(temp_name)

        weight_down = state_dict[key].to(
            curr_layer.weight.data.device, curr_layer.weight.data.dtype)
        weight_up = state_dict[up_key].to(
            curr_layer.weight.data.device, curr_layer.weight.data.dtype)

        if weight_up.ndim == 2:
            curr_layer.weight.data += 1/8 * alpha * \
                torch.mm(weight_up, weight_down)
        else:
            assert weight_up.ndim == 4
            curr_layer.weight.data += 1/8 * alpha * torch.mm(weight_up.flatten(
                start_dim=1), weight_down.flatten(start_dim=1)).reshape(curr_layer.weight.data.shape)
        num_lora += 1

    return unet