Spaces:
Build error
Build error
File size: 9,525 Bytes
c0fdaf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import torch
import numpy as np
from safetensors import safe_open
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
return c_skip, c_out
# Compare LCMScheduler.step, Step 4
def predicted_origin(model_output, timesteps, sample, prediction_type, alphas, sigmas):
if prediction_type == "epsilon":
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
pred_x_0 = (sample - sigmas * model_output) / alphas
elif prediction_type == "v_prediction":
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(
f"Prediction type {prediction_type} currently not supported.")
return pred_x_0
def scale_for_loss(timesteps, sample, prediction_type, alphas, sigmas):
if prediction_type == "epsilon":
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
sample = sample * alphas / sigmas
else:
raise ValueError(
f"Prediction type {prediction_type} currently not supported.")
return sample
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
class DDIMSolver:
def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50):
# DDIM sampling parameters
step_ratio = timesteps // ddim_timesteps
self.ddim_timesteps = (
np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
# self.ddim_timesteps = (torch.linspace(100**2,1000**2,30)**0.5).round().numpy().astype(np.int64) - 1
self.ddim_timesteps_prev = np.asarray(
[0] + self.ddim_timesteps[:-1].tolist()
)
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
self.ddim_alpha_cumprods_prev = np.asarray(
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
)
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
self.ddim_alpha_cumprods_prev = np.asarray(
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
)
# convert to torch tensors
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
self.ddim_timesteps_prev = torch.from_numpy(
self.ddim_timesteps_prev).long()
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
self.ddim_alpha_cumprods_prev = torch.from_numpy(
self.ddim_alpha_cumprods_prev)
def to(self, device):
self.ddim_timesteps = self.ddim_timesteps.to(device)
self.ddim_timesteps_prev = self.ddim_timesteps_prev.to(device)
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(
device)
return self
def ddim_step(self, pred_x0, pred_noise, timestep_index):
alpha_cumprod_prev = extract_into_tensor(
self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
return x_prev
@torch.no_grad()
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def convert_lcm_lora(unet, path, alpha=1.0):
if path.endswith(("ckpt",)):
state_dict = torch.load(path, map_location="cpu")
else:
state_dict = {}
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
num_alpha = 0
for key in state_dict.keys():
if "alpha" in key:
num_alpha += 1
lora_keys = [k for k in state_dict.keys(
) if k.endswith("lora_down.weight")]
updated_state_dict = {}
for key in lora_keys:
lora_name = key.split(".")[0]
if lora_name.startswith("lora_unet_"):
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
if "input.blocks" in diffusers_name:
diffusers_name = diffusers_name.replace(
"input.blocks", "down_blocks")
else:
diffusers_name = diffusers_name.replace(
"down.blocks", "down_blocks")
if "middle.block" in diffusers_name:
diffusers_name = diffusers_name.replace(
"middle.block", "mid_block")
else:
diffusers_name = diffusers_name.replace(
"mid.block", "mid_block")
if "output.blocks" in diffusers_name:
diffusers_name = diffusers_name.replace(
"output.blocks", "up_blocks")
else:
diffusers_name = diffusers_name.replace(
"up.blocks", "up_blocks")
diffusers_name = diffusers_name.replace(
"transformer.blocks", "transformer_blocks")
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
diffusers_name = diffusers_name.replace(
"to.out.0.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
diffusers_name = diffusers_name.replace(
"time.emb.proj", "time_emb_proj")
diffusers_name = diffusers_name.replace(
"conv.shortcut", "conv_shortcut")
updated_state_dict[diffusers_name] = state_dict[key]
up_diffusers_name = diffusers_name.replace(".down.", ".up.")
up_key = key.replace("lora_down.weight", "lora_up.weight")
updated_state_dict[up_diffusers_name] = state_dict[up_key]
state_dict = updated_state_dict
num_lora = 0
for key in state_dict:
if "up." in key:
continue
up_key = key.replace(".down.", ".up.")
model_key = key.replace("processor.", "").replace("_lora", "").replace(
"down.", "").replace("up.", "").replace(".lora", "")
model_key = model_key.replace("to_out.", "to_out.0.")
layer_infos = model_key.split(".")[:-1]
curr_layer = unet
while len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
curr_layer = curr_layer.__getattr__(temp_name)
weight_down = state_dict[key].to(
curr_layer.weight.data.device, curr_layer.weight.data.dtype)
weight_up = state_dict[up_key].to(
curr_layer.weight.data.device, curr_layer.weight.data.dtype)
if weight_up.ndim == 2:
curr_layer.weight.data += 1/8 * alpha * \
torch.mm(weight_up, weight_down)
else:
assert weight_up.ndim == 4
curr_layer.weight.data += 1/8 * alpha * torch.mm(weight_up.flatten(
start_dim=1), weight_down.flatten(start_dim=1)).reshape(curr_layer.weight.data.shape)
num_lora += 1
return unet
|