File size: 3,336 Bytes
a76ac1c
 
 
1152bd0
a76ac1c
 
61b8c4d
a76ac1c
 
 
 
 
 
 
 
03bccd0
a76ac1c
 
 
 
03bccd0
a76ac1c
 
 
 
 
03bccd0
a76ac1c
 
 
 
 
 
03bccd0
a76ac1c
 
 
 
 
03bccd0
a76ac1c
03bccd0
a76ac1c
 
 
 
 
 
cfc7e6f
03bccd0
a76ac1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6d669
 
a76ac1c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from typing import List, Tuple, Dict, Generator
from langchain.llms import OpenAI
import gradio as gr
import os
model_name = "gpt-3.5-turbo"
LLM = OpenAI(model_name=model_name, temperature=0.1)
qa_data_file_path=os.getcwd()+'/qa.txt'
import json
def save_qa_data(qa_data, file_path):
    with open(file_path, 'w', encoding='utf-8') as f:
         json.dump(qa_data, f, ensure_ascii=False, indent=4)
def create_history_messages(history: List[Tuple[str, str]]) -> List[dict]:
    history_messages = [{"role": "user", "content": m[0]} for m in history]
    history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
    return history_messages

def create_formatted_history(history_messages: List[dict]) -> List[Tuple[str, str]]:
    formatted_history = []
    user_messages = []
    assistant_messages = []

    for message in history_messages:
        if message["role"] == "user":
            user_messages.append(message["content"])
        elif message["role"] == "assistant":
            assistant_messages.append(message["content"])

        if user_messages and assistant_messages:
            formatted_history.append(
                ("".join(user_messages), "".join(assistant_messages))
            )
            user_messages = []
            assistant_messages = []

    # append any remaining messages
    if user_messages:
        formatted_history.append(("".join(user_messages), None))
    elif assistant_messages:
        formatted_history.append((None, "".join(assistant_messages)))

    return formatted_history

def chat(
    message: str, state: List[Dict[str, str]], client = LLM.client
) -> Generator[Tuple[List[Tuple[str, str]], List[Dict[str, str]]], None, None]:
    history_messages = state
    if history_messages == None:
        history_messages = []
        history_messages.append({"role": "system", "content": qa_data_file_path})

    history_messages.append({"role": "user", "content": message})
    # We have no content for the assistant's response yet but we will update this:
    history_messages.append({"role": "assistant", "content": ""})

    response_message = ""

    chat_generator = client.create(
        messages=history_messages, stream=True, model=model_name
    )

    for chunk in chat_generator:
        if "choices" in chunk:
            for choice in chunk["choices"]:
                if "delta" in choice and "content" in choice["delta"]:
                    new_token = choice["delta"]["content"]
                    # Add the latest token:
                    response_message += new_token
                    # Update the assistant's response in our model:
                    history_messages[-1]["content"] = response_message

                if "finish_reason" in choice and choice["finish_reason"] == "stop":
                    break
        formatted_history = create_formatted_history(history_messages)
        qa_data = formatted_history[-1]
        save_qa_data(qa_data, qa_data_file_path)
        yield formatted_history, history_messages
chatbot = gr.Chatbot(label="Chat").style(color_map=("yellow", "purple"))
iface = gr.Interface(
    fn=chat,
    inputs=[
        gr.Textbox(placeholder="Hello! How are you? etc.", label="Message"),
        "state",
    ],
    outputs=[chatbot, "state"],
    allow_flagging="never",
)

iface.queue().launch()