File size: 9,151 Bytes
e55d43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b83ac
e55d43b
 
 
 
 
 
 
 
 
 
 
 
 
 
12b83ac
 
 
85f3d92
 
 
e55d43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b83ac
e55d43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f3d92
e55d43b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
A simple wrapper for the official ChatGPT API
"""
import json
import os
import threading
import time
import requests
import tiktoken
from typing import Generator
from queue import PriorityQueue as PQ
import json
import os
import time
ENCODER = tiktoken.get_encoding("gpt2")
class chatPaper:
    """
    Official ChatGPT API
    """
    def __init__(
        self,
        api_keys: list,
        proxy = None,
        api_proxy = None,
        max_tokens: int = 4000,
        temperature: float = 0.5,
        top_p: float = 1.0,
        model_name: str = "gpt-3.5-turbo",
        reply_count: int = 1,
        system_prompt = "You are ChatPaper, A paper reading bot",
        lastAPICallTime = time.time()-100,
        apiTimeInterval = 20,
    ) -> None:
        self.model_name = model_name
        self.system_prompt = system_prompt
        self.apiTimeInterval = apiTimeInterval
        self.session = requests.Session()
        self.api_keys = PQ()
        for key in api_keys:
            self.api_keys.put((lastAPICallTime,key))
        self.proxy = proxy
        if self.proxy:
            proxies = {
                "http": self.proxy,
                "https": self.proxy,
            }
            self.session.proxies = proxies
        self.max_tokens = max_tokens
        self.temperature = temperature
        self.top_p = top_p
        self.reply_count = reply_count
        self.decrease_step = 250
        self.conversation = {}
        if self.token_str(self.system_prompt) > self.max_tokens:
            raise Exception("System prompt is too long")
        self.lock = threading.Lock()
        
    def get_api_key(self):
        with self.lock:
            apiKey = self.api_keys.get()
            delay = self._calculate_delay(apiKey)
            time.sleep(delay)
            self.api_keys.put((time.time(), apiKey[1]))
            return apiKey[1]

    def _calculate_delay(self, apiKey):
        elapsed_time = time.time() - apiKey[0]
        if elapsed_time < self.apiTimeInterval:
            return self.apiTimeInterval - elapsed_time
        else:
            return 0

    def add_to_conversation(self, message: str, role: str, convo_id: str = "default"):
        if(convo_id not in self.conversation):
            self.reset(convo_id)
        self.conversation[convo_id].append({"role": role, "content": message})

    def __truncate_conversation(self, convo_id: str = "default"):
        """
        Truncate the conversation
        """
        last_dialog = self.conversation[convo_id][-1]
        query = str(last_dialog['content'])
        if(len(ENCODER.encode(str(query)))>self.max_tokens):
            query = query[:int(1.5*self.max_tokens)]
        while(len(ENCODER.encode(str(query)))>self.max_tokens):
            query = query[:self.decrease_step]
        self.conversation[convo_id] = self.conversation[convo_id][:-1]
        full_conversation = "\n".join([str(x["content"]) for x in self.conversation[convo_id]],)
        if len(ENCODER.encode(full_conversation)) > self.max_tokens:
            self.conversation_summary(convo_id=convo_id)
        full_conversation = ""
        for x in self.conversation[convo_id]:
            full_conversation = str(x["content"]) + "\n" + full_conversation
        max_len_full_conversation = self.max_tokens - self.decrease_step
        if len(ENCODER.encode(full_conversation)) > max_len_full_conversation:
            full_conversation = full_conversation[:-max_len_full_conversation]
        while True:
            if (len(ENCODER.encode(full_conversation+query)) > self.max_tokens):
                query = query[:self.decrease_step]
            else:
                break
        last_dialog['content'] = str(query)
        self.conversation[convo_id].append(last_dialog)

    def ask_stream(
        self,
        prompt: str,
        role: str = "user",
        convo_id: str = "default",
        **kwargs,
    ) -> Generator:
        if convo_id not in self.conversation:
            self.reset(convo_id=convo_id)
        self.add_to_conversation(prompt, "user", convo_id=convo_id)
        self.__truncate_conversation(convo_id=convo_id)
        apiKey = self.get_api_key()
        response = self.session.post(
            "https://api.openai.com/v1/chat/completions",
            headers={"Authorization": f"Bearer {kwargs.get('api_key', apiKey)}"},
            json={
                "model": self.model_name,
                "messages": self.conversation[convo_id],
                "stream": True,
                # kwargs
                "temperature": kwargs.get("temperature", self.temperature),
                "top_p": kwargs.get("top_p", self.top_p),
                "n": kwargs.get("n", self.reply_count),
                "user": role,
            },
            stream=True,
        )
        if response.status_code != 200:
            raise Exception(
                f"Error: {response.status_code} {response.reason} {response.text}",
            )
        for line in response.iter_lines():
            if not line:
                continue
            # Remove "data: "
            line = line.decode("utf-8")[6:]
            if line == "[DONE]":
                break
            resp: dict = json.loads(line)
            choices = resp.get("choices")
            if not choices:
                continue
            delta = choices[0].get("delta")
            if not delta:
                continue
            if "content" in delta:
                content = delta["content"]
                yield content
    def ask(self, prompt: str, role: str = "user", convo_id: str = "default", **kwargs):
        """
        Non-streaming ask
        """
        response = self.ask_stream(
            prompt=prompt,
            role=role,
            convo_id=convo_id,
            **kwargs,
        )
        full_response: str = "".join(response)
        self.add_to_conversation(full_response, role, convo_id=convo_id)
        usage_token = self.token_str(prompt)
        com_token = self.token_str(full_response)
        total_token = self.token_cost(convo_id=convo_id)
        return full_response, usage_token, com_token, total_token

    def check_api_available(self):
        response = self.session.post(
            "https://api.openai.com/v1/chat/completions",
            headers={"Authorization": f"Bearer {self.get_api_key()}"},
            json={
                "model": self.model_name,
                "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "print A"}],
                "stream": True,
                # kwargs
                "temperature": self.temperature,
                "top_p": self.top_p,
                "n": self.reply_count,
                "user": "user",
            },
            stream=True,
        )
        if response.status_code == 200:
            return True
        else:
            return False
    def reset(self, convo_id: str = "default", system_prompt = None):
        """
        Reset the conversation
        """
        self.conversation[convo_id] = [
            {"role": "system", "content": str(system_prompt or self.system_prompt)},
        ]
    def conversation_summary(self, convo_id: str = "default"):
        input = ""
        role = ""
        for conv in self.conversation[convo_id]:
            if (conv["role"]=='user'):
                role = 'User'
            else:
                role = 'ChatGpt'
            input+=role+' : '+conv['content']+'\n'
        prompt = "Your goal is to summarize the provided conversation in English. Your summary should be concise and focus on the key information to facilitate better dialogue for the large language model.Ensure that you include all necessary details and relevant information while still reducing the length of the conversation as much as possible. Your summary should be clear and easily understandable for the ChatGpt model providing a comprehensive and concise summary of the conversation."
        if(self.token_str(str(input)+prompt)>self.max_tokens):
            input = input[self.token_str(str(input))-self.max_tokens:]
        while self.token_str(str(input)+prompt)>self.max_tokens:
            input = input[self.decrease_step:]
        prompt = prompt.replace("{conversation}", input)
        self.reset(convo_id='conversationSummary')
        response = self.ask(prompt,convo_id='conversationSummary')[0]
        while self.token_str(str(response))>self.max_tokens:
            response = response[:-self.decrease_step]
        self.reset(convo_id='conversationSummary',system_prompt='Summariaze our diaglog')
        self.conversation[convo_id] = [
            {"role": "system", "content": self.system_prompt},
            {"role": "user", "content": "Summariaze our diaglog"},
            {"role": 'assistant', "content": response},
        ]
        return self.conversation[convo_id]
    def token_cost(self,convo_id: str = "default"):
        return len(ENCODER.encode("\n".join([x["content"] for x in self.conversation[convo_id]])))
    def token_str(self,content:str):
        return len(ENCODER.encode(content))
def main():
    return