wangzhang commited on
Commit
e4aa56d
·
1 Parent(s): b0f09eb

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +144 -0
app.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from threading import Thread
2
+ from typing import Iterator
3
+
4
+ import gradio as gr
5
+ import spaces
6
+ import torch
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
8
+
9
+ MAX_MAX_NEW_TOKENS = 2048
10
+ DEFAULT_MAX_NEW_TOKENS = 1024
11
+ MAX_INPUT_TOKEN_LENGTH = 4096
12
+
13
+ DESCRIPTION = """\
14
+ # Llama-2 7B Chat
15
+
16
+ This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
17
+
18
+ 🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
19
+
20
+ 🔨 Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
21
+ """
22
+
23
+ LICENSE = """
24
+ <p/>
25
+
26
+ ---
27
+ As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
28
+ this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
29
+ """
30
+
31
+ if not torch.cuda.is_available():
32
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
33
+
34
+
35
+ if torch.cuda.is_available():
36
+ model_id = "wangzhang/ChatSDB"
37
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
38
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
39
+ tokenizer.use_default_system_prompt = False
40
+
41
+
42
+ @spaces.GPU
43
+ def generate(
44
+ message: str,
45
+ chat_history: list[tuple[str, str]],
46
+ system_prompt: str,
47
+ max_new_tokens: int = 1024,
48
+ temperature: float = 0.6,
49
+ top_p: float = 0.9,
50
+ top_k: int = 50,
51
+ repetition_penalty: float = 1.2,
52
+ ) -> Iterator[str]:
53
+ conversation = []
54
+ if system_prompt:
55
+ conversation.append({"role": "system", "content": system_prompt})
56
+ for user, assistant in chat_history:
57
+ conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
58
+ conversation.append({"role": "user", "content": message})
59
+
60
+ chat = tokenizer.apply_chat_template(conversation, tokenize=False)
61
+ inputs = tokenizer(chat, return_tensors="pt", add_special_tokens=False).to("cuda")
62
+ if len(inputs) > MAX_INPUT_TOKEN_LENGTH:
63
+ inputs = inputs[-MAX_INPUT_TOKEN_LENGTH:]
64
+ gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
65
+
66
+ streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
67
+ generate_kwargs = dict(
68
+ inputs,
69
+ streamer=streamer,
70
+ max_new_tokens=max_new_tokens,
71
+ do_sample=True,
72
+ top_p=top_p,
73
+ top_k=top_k,
74
+ temperature=temperature,
75
+ num_beams=1,
76
+ repetition_penalty=repetition_penalty,
77
+ )
78
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
79
+ t.start()
80
+
81
+ outputs = []
82
+ for text in streamer:
83
+ outputs.append(text)
84
+ yield "".join(outputs)
85
+
86
+
87
+ chat_interface = gr.ChatInterface(
88
+ fn=generate,
89
+ additional_inputs=[
90
+ gr.Textbox(label="System prompt", lines=6),
91
+ gr.Slider(
92
+ label="Max new tokens",
93
+ minimum=1,
94
+ maximum=MAX_MAX_NEW_TOKENS,
95
+ step=1,
96
+ value=DEFAULT_MAX_NEW_TOKENS,
97
+ ),
98
+ gr.Slider(
99
+ label="Temperature",
100
+ minimum=0.1,
101
+ maximum=4.0,
102
+ step=0.1,
103
+ value=0.6,
104
+ ),
105
+ gr.Slider(
106
+ label="Top-p (nucleus sampling)",
107
+ minimum=0.05,
108
+ maximum=1.0,
109
+ step=0.05,
110
+ value=0.9,
111
+ ),
112
+ gr.Slider(
113
+ label="Top-k",
114
+ minimum=1,
115
+ maximum=1000,
116
+ step=1,
117
+ value=50,
118
+ ),
119
+ gr.Slider(
120
+ label="Repetition penalty",
121
+ minimum=1.0,
122
+ maximum=2.0,
123
+ step=0.05,
124
+ value=1.2,
125
+ ),
126
+ ],
127
+ stop_btn=None,
128
+ examples=[
129
+ ["Hello there! How are you doing?"],
130
+ ["Can you explain briefly to me what is the Python programming language?"],
131
+ ["Explain the plot of Cinderella in a sentence."],
132
+ ["How many hours does it take a man to eat a Helicopter?"],
133
+ ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
134
+ ],
135
+ )
136
+
137
+ with gr.Blocks(css="style.css") as demo:
138
+ gr.Markdown(DESCRIPTION)
139
+ gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
140
+ chat_interface.render()
141
+ gr.Markdown(LICENSE)
142
+
143
+ if __name__ == "__main__":
144
+ demo.queue(max_size=20).launch()