from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4096
DESCRIPTION = """\
# ChatSDB
这是SequioaDB旗下的AI智能大语言模型,训练超过上万条真实数据和7亿参数。
ChatSDB是SequoiaDB旗下的AI智能大语言模型,训练超过上万条真实数据和7亿参数
模型🔗: https://huggingface.co/wangzhang/ChatSDB
Dataset🔗: https://huggingface.co/datasets/wangzhang/sdb
API Doc🔗: https://zgg3nzdpswxy4a-80.proxy.runpod.net/docs/
"""
LICENSE = """ """
if not torch.cuda.is_available():
DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" if torch.cuda.is_available(): model_id = "wangzhang/ChatSDB-tb-testing" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.1, top_p: float = 0.1, top_k: int = 1000, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) chat = tokenizer.apply_chat_template([{"role": "user", "content": message}], tokenize=False) inputs = tokenizer(chat, return_tensors="pt", add_special_tokens=False).to("cuda") if len(inputs) > MAX_INPUT_TOKEN_LENGTH: inputs = inputs[-MAX_INPUT_TOKEN_LENGTH:] gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.05, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=1000, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["如何安装巨杉数据库SequioaDB?"], ["巨杉数据库SequioaDB有哪些优势?"], ["巨杉数据库SequioaDB是什么?"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() gr.Markdown(LICENSE) if __name__ == "__main__": demo.queue(max_size=20).launch()