File size: 17,932 Bytes
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f1bc1
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4b9f96
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f71b612
4947b21
 
f71b612
4947b21
 
 
 
f71b612
4947b21
 
f71b612
4947b21
 
 
 
 
 
 
 
f71b612
4947b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import pandas as pd
from PIL import Image
import streamlit as st
import cv2
from streamlit_drawable_canvas import st_canvas
import torch
from diffusers import AutoPipelineForInpainting
import numpy as np
from streamlit_image_select import image_select
import os
import requests 
from streamlit_navigation_bar import st_navbar
from langchain_community.llms import Ollama
import base64
from io import BytesIO
from PIL import Image, ImageDraw
from streamlit_lottie import st_lottie 
from streamlit_option_menu import option_menu
import json
from transformers import pipeline
import streamlit as st
from streamlit_modal import Modal
import streamlit.components.v1 as components
from datetime import datetime


def image_to_base64(image_path):
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode()
    

@st.cache_resource
def load_model():
    pipeline_ = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16).to("cuda")
    return pipeline_

# @st.cache_resource
def prompt_improvment(pre_prompt):

    llm = Ollama(model="llama3:latest",num_ctx=1000)
    enhancement="Please use details from the prompt mentioned above, focusing only what user is thinking with the prompt and also add 8k resolution. Its a request only provide image description and brief prompt no other text."
    prompt = pre_prompt+"\n"+enhancement
    # result = llm.invoke(prompt)
    return llm.stream(prompt)
def numpy_to_list(array):

    current=[]
    for value in array:
        if isinstance(value,type(np.array([]))):
            result=numpy_to_list(value)
            current.append(result)
        else:
            
            current.append(int(value))
    return current



@st.cache_resource
def llm_text_response():
    llm = Ollama(model="llama3:latest",num_ctx=1000)
    return llm.stream

def model_single_out(prompt):
    pipe=load_model()
    image = pipe(prompt).images[0]
    return image

def model_out_put(init_image,mask_image,prompt,negative_prompt):
    pipeline_ = load_model()
    image = pipeline_(prompt=prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask_image).images[0]
    return image

@st.cache_resource
def multimodel():
    pipeline_ = pipeline("text-classification", model = "/home/user/app/model_path/")
    return pipeline_
   
def multimodel_output(prompt):
    pipeline_ = multimodel()
    image = pipeline_(prompt)
    return image[0]['label']

def d4_to_3d(image):
    formatted_array=[]
    for j in image:
        neste_list=[]
        for k in j:
            if any([True if i>0 else False for i in k]):
                neste_list.append(True)
            else:
                neste_list.append(False)
        formatted_array.append(neste_list)
    print(np.shape(formatted_array))
    return np.array(formatted_array)
    
st.set_page_config(layout="wide")

st.write(str(os.getcwd()))

img_selection=None
# Specify canvas parameters in application
drawing_mode = st.sidebar.selectbox(
    "Drawing tool:", ("freedraw","point", "line", "rect", "circle", "transform")
)


dictionary=st.session_state
if "every_prompt_with_val" not in dictionary:
    dictionary['every_prompt_with_val']=[]
if "current_image" not in dictionary:
    dictionary['current_image']=[]
if "prompt_collection"  not in dictionary:
    dictionary['prompt_collection']=[]
if "user" not in dictionary:
    dictionary['user']=None
if "current_session" not in dictionary:
    dictionary['current_session']=None

stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 20)
if drawing_mode == 'point':
        point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
stroke_color = '#000000'
bg_color = "#eee"


column1,column2=st.columns([0.7,0.35])

with open("/home/user/app/DataBase/datetimeRecords.json","r") as read:
    dateTimeRecord=json.load(read)
with column2:
    st.header("HISTORY")
    tab1,tab2,tab3,tab4=st.tabs(["CHAT HISTORY","IMAGES","PROMPT IMPROVEMENT","LOGIN"])
    with tab1:

        
 
        if not len(dictionary['every_prompt_with_val']):
            st.header("I will store all the chat for the current session")
            with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
                url_json=json.load(read)
            st_lottie(url_json,height = 400)
        else:

            with st.container(height=600):


                for index,prompts_ in enumerate(dictionary['every_prompt_with_val'][::-1]):
                    if prompts_[-1]=="@working":
                        if index==0:
                            st.write(prompts_[0].upper())
                            data_need=st.write_stream(llm_text_response()(prompts_[0]))
                            dictionary['every_prompt_with_val'][-1]=(prompts_[0],str(data_need))
                            
                    elif isinstance(prompts_[-1],str):
                        if index==0:
                            st.text_area(label=prompts_[0].upper(),value=prompts_[-1],height=500)
                        else:
                            st.text_area(label=prompts_[0].upper(),value=prompts_[-1])

                    else:
                        st.write(prompts_[0].upper())
                        with st.container(height=400):
                            format1,format2=st.columns([0.2,0.8])
                            with format1:
                                new_img=Image.open("/home/user/app/ALL_image_formation/image_gen.png")
                                st.write("<br>",unsafe_allow_html=True)
                                size = min(new_img.size)
                                mask = Image.new('L', (size, size), 0)
                                draw = ImageDraw.Draw(mask)
                                draw.ellipse((0, 0, size, size), fill=255)

                                image = new_img.crop((0, 0, size, size))
                                image.putalpha(mask)
                                st.image(image)                    
                            with format2:

                                st.write("<br>",unsafe_allow_html=True)
                                size = min(prompts_[-1].size)
                                mask = Image.new('L', (size, size), 0)
                                draw = ImageDraw.Draw(mask)
                                draw.ellipse((0, 0, size, size), fill=255)

                                # Crop the image to a square and apply the mask
                                image = prompts_[-1].crop((0, 0, size, size))
                                image.putalpha(mask)
                                st.image(image)
 
    with tab2:
        
        if "current_image" in dictionary and len(dictionary['current_image']):
            with st.container(height=600):
                dictinory_length=len(dictionary['current_image'])
                
                img_selection = image_select(
                    label="",
                    images=dictionary['current_image'] if len(dictionary['current_image'])!=0 else None,
                )
                if img_selection in dictionary['current_image']:
                    dictionary['current_image'].remove(img_selection)
                    dictionary['current_image'].insert(0,img_selection)
                    # st.rerun()

                img_selection.save("image.png")
                with open("image.png", "rb") as file:
                    downl=st.download_button(label="DOWNLOAD",data=file,file_name="image.png",mime="image/png")
                os.remove("image.png")
        else:

            st.header("This section will store the updated images")
            with open("/home/user/app/lotte_animation_saver/animation_1.json") as read:
                url_json=json.load(read)
            st_lottie(url_json,height = 400)
    with tab3:
        if len(dictionary['prompt_collection'])!=0:
            with st.container(height=600):
                prompt_selection=st.selectbox(label="Select the prompt for improvment",options=["Mention below are prompt history"]+dictionary["prompt_collection"],index=0)

                if prompt_selection!="Mention below are prompt history":

                    generated_prompt=prompt_improvment(prompt_selection)
                    dictionary['generated_image_prompt'].append(generated_prompt)
                    st.write_stream(generated_prompt)

        else:

            st.header("This section will provide prompt improvement section")
            with open("/home/user/app/lotte_animation_saver/animation_3.json") as read:
                url_json=json.load(read)
            st_lottie(url_json,height = 400)
        with tab4:
            
            # with st.container(height=600):

            if not dictionary['user']   : 
                with st.form("my_form"):
                    # st.header("Please login for save your data")
                    with open("/home/user/app/lotte_animation_saver/animation_5.json") as read:
                        url_json=json.load(read)
                    st_lottie(url_json,height = 200)                
                    user_id = st.text_input("user login")
                    password = st.text_input("password",type="password")
                    submitted_login = st.form_submit_button("Submit")
                    # Every form must have a submit button.

                    if submitted_login:
                        with open("/home/user/app/DataBase/login.json","r") as read:
                            login_base=json.load(read)
                        if user_id in login_base and login_base[user_id]==password:
                            dictionary['user']=user_id
                            st.rerun()
                        else:
                            st.error("userid or password incorrect")

                        st.write("working")
                    modal = Modal(
                        "Sign up", 
                        key="demo-modal",
                        
                        padding=10,    # default value
                        max_width=600  # default value
                    )
                open_modal = st.button("sign up")
                if open_modal:
                    modal.open()

                if modal.is_open():
                    with modal.container():

                        with st.form("my_form1"):
                            sign_up_column_left,sign_up_column_right=st.columns(2)
                            with sign_up_column_left:
                                with open("/home/user/app/lotte_animation_saver/animation_6.json") as read:
                                    url_json=json.load(read)
                                st_lottie(url_json,height = 200) 
    
                            with sign_up_column_right:
                                user_id = st.text_input("user login")
                                password = st.text_input("password",type="password")
                                submitted_signup = st.form_submit_button("Submit")

                            if submitted_signup:
                                with open("/home/user/app/DataBase/login.json","r") as read:
                                    login_base=json.load(read)
                                if not login_base:
                                    login_base={}
                                if user_id not in login_base:
                                    login_base[user_id]=password
                                    with open("/home/user/app/DataBase/login.json","w") as write:
                                        json.dump(login_base,write,indent=2)  
                                    st.success("you are a part now")  
                                    dictionary['user']=user_id
                                    modal.close()                       
                                else:
                                    st.error("user id already exists")
            else:
                st.header("REPORTED ISSUES")
                with st.container(height=370):

                    with open("/home/user/app/DataBase/datetimeRecords.json") as feedback:
                        temp_issue=json.load(feedback)

                    arranged_feedback=reversed(temp_issue['database'])
                    
                    for report in arranged_feedback:
                        user_columns,user_feedback=st.columns([0.3,0.8])

                        with user_columns:
                            st.write(report[-1])
                        with user_feedback:
                            st.write(report[1])
                     
                feedback=st.text_area("Feedback Report and Improvement",placeholder="")
                summit=st.button("submit")
                if summit:
                    with open("/home/user/app/DataBase/datetimeRecords.json","r") as feedback_sumit:
                        temp_issue_submit=json.load(feedback_sumit)        
                    if  "database" not in temp_issue_submit:
                        temp_issue_submit["database"]=[]
                    temp_issue_submit["database"].append((str(datetime.now()),feedback,dictionary['user'])) 
                    with open("/home/user/app/DataBase/datetimeRecords.json","w") as feedback_sumit:
                        json.dump(temp_issue_submit,feedback_sumit)                    
                            


                    # st.rerun()
                
                
                    



bg_image = st.sidebar.file_uploader("PLEASE UPLOAD IMAGE FOR EDITING:", type=["png", "jpg"])
bg_doc = st.sidebar.file_uploader("PLEASE UPLOAD DOC FOR PPT/PDF/STORY:", type=["pdf","xlsx"])


if "bg_image" not in dictionary:
    dictionary["bg_image"]=None

if img_selection  and dictionary['bg_image']==bg_image:
    gen_image=dictionary['current_image'][0]
else:
    if bg_image:
        gen_image=Image.open(bg_image) 
    else:
        gen_image=None






with column1:
# Create a canvas component
    changes,implementation,current=st.columns([0.3,0.6,0.3])

    with implementation:
                st.write("<br>"*5,unsafe_allow_html=True)
                canvas_result = st_canvas(
                    fill_color="rgba(255, 165, 0, 0.3)",  # Fixed fill color with some opacity
                    stroke_width=stroke_width,
                    stroke_color=stroke_color,
                    background_color=bg_color,
                    background_image=gen_image if gen_image else Image.open("/home/user/app/ALL_image_formation/image_gen.png"),
                    update_streamlit=True,
                    height=500,
                    width=500,
                    drawing_mode=drawing_mode,
                    point_display_radius=point_display_radius if drawing_mode == 'point' else 0,
                    key="canvas",
                )





with column1:
    # prompt=st.text_area("Please provide the prompt")
    prompt=st.chat_input("Please provide the prompt")
    
    negative_prompt="the black masked area"

    # run=st.button("run_experiment")



if canvas_result.image_data is not None:
    if prompt:

        text_or_image=multimodel_output(prompt)
        
        if text_or_image=="LABEL_0":
        
            if "generated_image_prompt" not in dictionary:
                dictionary['generated_image_prompt']=[]
            if prompt not in dictionary['prompt_collection'] and prompt not in dictionary['generated_image_prompt']:
                dictionary['prompt_collection']=[prompt]+dictionary['prompt_collection']
            new_size=np.array(canvas_result.image_data).shape[:2]
            new_size=(new_size[-1],new_size[0])
            if bg_image!=dictionary["bg_image"] :
                dictionary["bg_image"]=bg_image
                if bg_image!=None:
                    imf=Image.open(bg_image).resize(new_size)
                else:
                    with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
                        url_json=json.load(read)        
                    st_lottie(url_json) 
                    imf=Image.open("/home/user/app/ALL_image_formation/home_screen.jpg").resize(new_size)
            else:
                if len(dictionary['current_image'])!=0:
                    imf=dictionary['current_image'][0]
                else:
                    with open("/home/user/app/lotte_animation_saver/animation_4.json") as read:
                        url_json=json.load(read)        
                    st_lottie(url_json) 
                    imf=Image.open("/home/user/app/ALL_image_formation/home_screen.jpg")

            negative_image =d4_to_3d(np.array(canvas_result.image_data))
            if np.sum(negative_image)==0:
                negative_image=Image.fromarray(np.where(negative_image == False, True, negative_image))
            else:
                negative_image=Image.fromarray(negative_image)
            
            modifiedValue=model_out_put(imf,negative_image,prompt,negative_prompt)
            modifiedValue.save("/home/user/app/ALL_image_formation/current_session_image.png")
            dictionary['current_image']=[modifiedValue]+dictionary['current_image']
            dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
            st.rerun()
        else:
            st.write("nothing importent")
            modifiedValue="@working"
            dictionary['every_prompt_with_val'].append((prompt,modifiedValue))
            st.rerun()
            # st.image(modifiedValue,width=300)
    
        
        
if canvas_result.json_data is not None:
    objects = pd.json_normalize(canvas_result.json_data["objects"]) # need to convert obj to str because PyArrow
    for col in objects.select_dtypes(include=['object']).columns:
        objects[col] = objects[col].astype("str")